
rmlint documentation
Release

May 01, 2018

Contents

1 Installation 3
1.1 Dependencies . 3
1.2 Compilation . 5

2 Gentle Guide to rmlint 7
2.1 Beginner Examples . 7
2.2 Filtering input files . 8
2.3 Outputs & Formatters . 10
2.4 Paranoia mode . 13
2.5 Original detection / selection . 13
2.6 Finding duplicate directories . 15
2.7 Replaying results . 16
2.8 Miscellaneous options . 17

3 Graphical user interface 19
3.1 Installation . 19
3.2 Usage . 19
3.3 Developers . 20

4 Cautions (or why it’s hard to write a dupefinder) 23
4.1 Good Practice when Deleting Duplicates . 23
4.2 Attributes of a Robust Duplicate Finder . 24

5 Frequently Asked Questions 29
5.1 rmlint finds more/less dupes than tool X! . 29
5.2 Can you implement feature X? . 29
5.3 I forgot to add some options before running on a large dataset. Do I need to re-run it? 30
5.4 I have a very large number of files and I run out of memory and patience. 30

6 Informative reference 31
6.1 Developer’s Guide . 31
6.2 Translating rmlint . 37
6.3 Benchmarks . 38
6.4 rmlint . 39

7 Authors 51

i

8 License 53

9 Donations 55

ii

rmlint documentation, Release

rmlint finds space waste and other broken things on your filesystem and offers to remove it. It is able to find:

• Duplicate files & directories.
• Nonstripped Binaries
• Broken symlinks.
• Empty files.
• Recursive empty directories.
• Files with broken user or group id.

Key Features:

• Extremely fast.
• Flexible and easy commandline options.
• Choice of several hashes for hash-based deplicate detection
• Option for exact byte-by-byte comparison (only slightly slower).
• Numerous output options.
• Option to store time of last run; next time will only scan new files.
• Many options for original selection / prioritisation.
• Can handle very large file sets (millions of files).
• Colorful progressbar. ()

Although rmlint is easy to use, you might want to read these chapters first. They show you the basic principles and
most of the advanced options:

Contents 1

https://travis-ci.org/sahib/rmlint
https://github.com/sahib/rmlint/issues
https://github.com/sahib/rmlint/releases
https://waffle.io/sahib/rmlint
https://www.gnu.org/licenses/quick-guide-gplv3.html.en

rmlint documentation, Release

2 Contents

CHAPTER 1

Installation

Many major Linux distribution might already package rmlint – but watch out for the version. This manual describes
the rewrite of rmlint (i.e. version ≥ 2). Old versions before this might contain bugs, have design flaws or might eat
your hamster. We recommend using the newest version.

If there is no package yet or you want to try a development version, you gonna need to compile rmlint from source.

1.1 Dependencies

1.1.1 Hard dependencies:

• glib ≥ 2.32 (general C Utility Library)

1.1.2 Soft dependencies:

• libblkid (detecting mountpoints)

• libelf (nonstripped binary detection)

• libjson-glib (parsing rmlint’s own json as caching layer)

1.1.3 Build dependencies:

• git (version control)

• scons (build system)

• sphinx (manpage/documentation generation)

• gettext (support for localization)

Here’s a list of readily prepared commands for known distributions:

3

rmlint documentation, Release

• Fedora ≥ 21:

$ yum -y install git scons python3-sphinx gettext json-glib-devel
$ yum -y install glib2-devel libblkid-devel elfutils-libelf-devel
Optional dependencies for the GUI:
$ yum -y install pygobject3 gtk3 librsvg2

There are also pre-built packages on Fedora Copr:

$ dnf copr enable sahib/rmlint
$ dnf install rmlint

Those packages are built from master snapshots and might be outdated.

• ArchLinux:

There is an official package in [community] here:

$ pacman -S rmlint

Alternatively you can use rmlint-git in the AUR:

$ pacman -S git scons python-sphinx
$ pacman -S glib2 libutil-linux elfutils json-glib
Optional dependencies for the GUI:
$ pacman -S gtk3 python-gobject librsvg

There is also a PKGBUILD on the ArchLinux AUR:

$ # Use your favourite AUR Helper.
$ yaourt -S rmlint-git

It is built from git master, not from the develop branch.

• Ubuntu ≥ 12.04:

This most likely applies to most distributions that are derived from Ubuntu.

$ apt-get install git scons python3-sphinx python3-nose gettext build-essential
Optional dependencies for more features:
$ apt-get install libelf-dev libglib2.0-dev libblkid-dev libjson-glib-1.0 libjson-
→˓glib-dev
Optional dependencies for the GUI:
$ apt-get install python3-gi gir1.2-rsvg gir1.2-gtk-3.0

• FreeBSD ≥ 10.1:

$ pkg install git scons py27-sphinx
$ pkg install glib gettext libelf json-glib

Send us a note if you want to see your distribution here. The commands above install the full dependencies, therefore
some packages might be stripped if you do not need the feature they enable. Only hard requirement is glib.

Also be aware that the GUI needs at least 𝑔𝑡𝑘 ≥ 3.14 to work!

4 Chapter 1. Installation

https://copr.fedoraproject.org/coprs/sahib/rmlint/
https://www.archlinux.org/packages/?name=rmlint
https://aur.archlinux.org/packages/rm/rmlint-git/PKGBUILD
https://aur.archlinux.org/packages/rmlint-git

rmlint documentation, Release

1.2 Compilation

Compilation consists of getting the source and translating it into a usable binary. We use the build system scons.
Note that the following instructions build the software from the potentially unstable develop branch:

$ # Omit -b develop if you want to build from the stable master
$ git clone -b develop https://github.com/sahib/rmlint.git
$ cd rmlint/
$ scons config # Look what features scons would compile
$ scons DEBUG=1 -j4 # For releases you can omit DEBUG=1
$ sudo scons DEBUG=1 -j4 --prefix=/usr install

Done!

You should be now able to see the manpage with rmlint --help or man 1 rmlint.

You can also only type the install command above. The buildsystem is clever enough to figure out which targets
need to be built beforehand.

1.2. Compilation 5

rmlint documentation, Release

6 Chapter 1. Installation

CHAPTER 2

Gentle Guide to rmlint

Welcome to the Tutorial of rmlint.

We use a few terms that might not be obvious to you at first, so we gonna explain them to you here.

Original In a group of duplicate files, one file is said to be the original file. It might not, strictly speaking,
be the original from which the copies where created, but is an convenient terminology for selecting
which files to keep and which to delete.

Duplicate A file that matches the original. Note that depending on rmlint settings, "match" may mean an
exact match or just that the files have matching hash values (see XXX)

2.1 Beginner Examples

Let’s just dive in into some examples:

$ rmlint

This simply scans your current working directory for lint and reports them in your terminal. Note that nothing will be
removed (even if it prints rm).

Despite it’s name, rmlint just finds suspicious files, but never modifies the filesystem itself*0. Instead it gives
you detailed reports in different formats to get rid of them yourself. These reports are called outputs. By default a
shellscript will be written to rmlint.sh that contains readily prepared shell commands to remove duplicates and
other finds,

So for the above example the full process, if you want to actually delete the lint that was found, would be:

$ rmlint some/path
(wait for rmlint to finish running)
$ gedit rmlint.sh
(or any editor you prefer... review the content of rmlint.sh to
check what it plans to delete; make any edits as necessary)

0 You could say it should be named findlint.

7

rmlint documentation, Release

$./rmlint.sh
(the rmlint.sh script will ask for confirmation, then delete the
appropriate lint, then delete itself)

On larger runs, it might be more preferable to show a progressbar instead of a long list of files. You can do this easily
with the -g switch:

$ rmlint -g

2.2 Filtering input files

What if we do not want to check all files as dupes? rmlint has a good repertoire of options to select only certain files.
We won’t cover all options, but will get you started with a few useful ones. Note if you want a more do-it-yourself
approach to file filtering, you can also use external tools to feed rmlint's stdin:

$ find pics/ -iname '*.png' | rmlint -

2.2.1 Limit files by size using --size

only check files between 20 MB and 1 Gigabyte:
$ rmlint --size 20M-1G
short form (-s) works just as well:
$ rmlint -s 20M-1G
only check files bigger than 4 kB:
$ rmlint -s 4K
only check files smaller than 1234 bytes:
$ rmlint -s 0-1234

Valid units include:

K,M,G,T,P for powers of 1000
KB, MB, GB etc for powers of 1024

If no units are given, rmlint assumes bytes.

2.2.2 Limit duplicate matching according to basename

By default, rmlint compares file contents, regardless of file name. So if afile.jpg has the same content as bfile.txt
(which is unlikely!), then rmlint will find and report this as a duplicate. You can speed things up a little bit by telling
rmlint not to try to match files unless they have the same or similar file names. The three options here are:

-b (--match-basename)
-e (--match-extension)
-i (--match-without-extension) .

Examples:

8 Chapter 2. Gentle Guide to rmlint

rmlint documentation, Release

Find all duplicate files with the same basename:
$ rmlint -b some_dir/
ls some_dir/one/hello.c
rm some_dir/two/hello.c
Find all duplicate files that have the same extension:
$ rmlint -e some_dir/
ls some_dir/hello.c
rm some_dir/hello_copy.c
Find all duplicate files that have the same basename:
minus the extension
$ rmlint -e some_dir/
ls some_dir/hello.c
rm some_dir/hello.bak

2.2.3 Limit files by their modification time

This is an useful feature if you want to investigate only files newer than a certain date or if you want to progessively
update the results, i.e. when you run rmlint in a script that watches a directory for duplicates.

The manual way is using -N (--newer-than=<timestamp>):

Use a Unix-UTC Timestamp (seconds since epoch)
$ rmlint -N 1414755960

Find all files newer than file.png
$ rmlint -N $(stat --print %Y file.png)

Alternatively use a ISO8601 formatted Timestamp
$ rmlint -N 2014-09-08T00:12:32+0200

If you are periodically checking the same directory tree for duplicates, you can get a substantial speedup by
creating an automatic timestamp file each time you run rmlint. To do this, use command line options: -n
(--newer-than-stamp) and -O stamp:stamp.file (we’ll come to outputs in a minute): Here’s an example
for incrementally scanning your home folder:

First run of rmlint:
$ rmlint /home/foobar -O stamp:/home/foobar/.rmlint.stamp
ls /home/foobar/a.file
rm /home/foobar/b.file

Second run, no changes:
$ rmlint /home/foobar -n /home/foobar/.rmlint.stamp
<nothing>

Second run, new file copied:
$ cp /home/foobar/a.file /home/foobar/c.file
$ rmlint /home/foobar -n /home/foobar/.rmlint.stamp
ls /home/foobar/a.file
rm /home/foobar/b.file
rm /home/foobar/c.file

Note that -n updates the timestamp file each time it is run.

2.2. Filtering input files 9

rmlint documentation, Release

2.3 Outputs & Formatters

rmlint is capable of creating reports in several output formats, to either your screen or to a file. If you run it with
the default options you already see two of those output formatters on your screen, namely pretty and summary.

Extra output formats can be added via either the -O (--add-output) or -o (--output) switch. The only differ-
ence is the -o clears all the default outputs while -O just adds to the defaults.

Note: If you just came here to learn how to print a nice progressbar: Just use the -g (--progress) option:

$ rmlint -g /usr

Here’s an example:

$ rmlint -o json:stderr

Here you would get this output printed on stderr:

[{
"description": "rmlint json-dump of lint files",
"cwd": "/home/user/",
"args": "rmlint -o json:stderr"

},
{

"type": "duplicate_file",
"path": "/home/user/test/b/one",
"size": 2,
"inode": 2492950,
"disk_id": 64771,
"progress": 100,
"is_original": true,
"mtime": 1414587002

},
... snip ...
{

"aborted": false,
"total_files": 145,
"ignored_files": 9,
"ignored_folders": 4,
"duplicates": 11,
"duplicate_sets": 2,
"total_lint_size": 38

}]

You probably noticed the colon in the commandline above. Everything before it is the name of the output-format,
everything behind is the path where the output should land. Instead of an path you can also use stdout and stderr,
as we did above or just omit the colon which will print everything to stdout.

Some formatters can be customised using the -c (--config) command. Here’s the list of currently available for-
matters and their config options:

json Outputs all finds as a json document. The document is a list of dictionaries, where the first and
last element is the header and the footer respectively, everything between are data-dictionaries. This
format was chosen to allow application to parse the output in realtime while rmlint is still running.

The header contains information about the proram invocation, while the footer contains statistics
about the program-run. Every data element has a type which identifies it’s lint type (you can lookup

10 Chapter 2. Gentle Guide to rmlint

rmlint documentation, Release

all types here_).

Config values:

• use_header=[true|false]: Print the header with metadata.

• use_footer=[true|false]: Print the footer with statistics.

• oneline=[true|false]: Print one json document per line.

sh Outputs a shell script defines a command function for each lint type, which it then calls for each file
of each type. The script can be executed (it is already chmod +x’d by rmlint). By default it will
ask you if you really want to proceed. If you do not want that confirmation prompt you can pass the
-d. Additionally it will delete itself after running, unless you pass the -x switch to the sh script.

It is enabled by default and writes to rmlint.sh.

Example output:

$ rmlint -o sh:stdout
#!/bin/sh
This file was autowritten by rmlint
rmlint was executed from: /home/user/
You command line was: ./rmlint -o sh:rmlint.sh

... snip ...

echo '/home/user/test/b/one' # original
remove_cmd '/home/user/test/b/file' # duplicate
remove_cmd '/home/user/test/a/two' # duplicate
remove_cmd '/home/user/test/a/file' # duplicate

if [-z $DO_REMOVE]
then
rm -f 'rmlint.sh';

fi

Config values:

• clone: btrfs only. Try to clone both files with the BTRFS_IOC_FILE_EXTENT_SAME
ioctl(3p). This will physically delete duplicate extents. Needs at least kernel 4.2.

• reflink: Try to reflink the duplicate file to the original. See also --reflink in man 1 cp.
Fails if the filesystem does not support it.

• hardlink: Replace the duplicate file with a hardlink to the original file. Fails if both files are not
on the same partition.

• symlink: Tries to replace the duplicate file with a symbolic link to the original. Never fails.

• remove: Remove the file using rm -rf. (-r for duplicate dirs). Never fails.

• usercmd: Use the provided user defined command (-c sh:cmd='*user command*').
Use "$1" within ’user command’ to refer to the duplicate file and (optionally) "$2" to refer to
the original.

Example (predefined config):

$ rmlint -o sh:stdout -o sh:rmlint.sh -c sh:symlink
...
echo '/home/user/test/b/one' # original
cp_symlink '/home/user/test/b/file' '/home/user/test/b/one' # duplicate
$./rmlint.sh -d

2.3. Outputs & Formatters 11

rmlint documentation, Release

Keeping: /home/user/test/b/one
Symlinking to original: /home/user/test/b/file

Example (custom command):

The following example uses the trash-put command from the trash-cli utility to move duplicate files
to trash:

$ rmlint -o sh -c sh:cmd='echo "Trashing $1" && trash-put "$1"'

py Outputs a python script and a JSON file. The json file is the same as that produced by the json
formatter. The JSON file is written to .rmlint.json, executing the python script will find it
there. The default python script produced by rmlint does pretty much the same thing as the shell
script described above (although not reflinking or hardlinking or symlinking at the moment). You can
customise the python script for just about any usecase (Python is a simple and extremely powerful
programming language).

Example:

$ rmlint -o py:remover.py
$./remover.py --dry-run # Needs Python3
Deleting twins of /home/user/sub2/a
Handling (duplicate_file): /home/user/sub1/a
Handling (duplicate_file): /home/user/a

Deleting twins of /home/user/sub2/b
Handling (duplicate_file): /home/user/sub1/b

csv Outputs a csv formatted dump of all lint files. Handy for all the spreadsheet-jockeys out there! It
looks like this:

$ rmlint -o csv -D
type,path,size,checksum
emptydir,"/home/user/tree2/b",0,00000000000000000000000000000000
duplicate_dir,"/home/user/test/b",4,f8772f6fda08bbc826543334663d6f13
duplicate_dir,"/home/user/test/a",4,f8772f6fda08bbc826543334663d6f13
duplicate_dir,"/home/user/tree/b",8,62202a79add28a72209b41b6c8f43400
duplicate_dir,"/home/user/tree/a",8,62202a79add28a72209b41b6c8f43400
duplicate_dir,"/home/user/tree2/a",4,311095bc5669453990cd205b647a1a00

Config values:

• use_header=[true|false]: Print the column name headers.

stamp Outputs a timestamp of the time rmlint was run.

Config values:

• iso8601=[true|false]: Write an ISO8601 formatted timestamps or seconds since epoch?

pretty Pretty-prints the found files in a colorful output (intended to be printed on stdout or stderr). This
is enabled by default.

summary Sums up the run in a few lines with some statistics. This enabled by default too.

progressbar Prints a progressbar during the run of rmlint. This is recommended for large runs where
the pretty formatter would print thousands of lines.

Not recommended in combination with pretty

Config values:

12 Chapter 2. Gentle Guide to rmlint

https://github.com/andreafrancia/trash-cli

rmlint documentation, Release

• update_interval=number: Number of milliseconds to wait between updates. Higher values use
less resources.

fdupes A formatter that behaves similar to fdupes(1) - another duplicate finder. This is mostly indented
for compatibility (e.g. scripts that relied on that format). Duplicate set of files are printed as block,
each separated by a newline. Original files are highlighted in green (this is an addition). During
scanning a progressbar and summary are printed, followed by the fdupes output. The first two are
printed to stderr, while the parseable lines will be printed to stdout.

Consider using the far more powerful json output for scripting purposes, unless you already have
a script that expects fdupes output.

2.4 Paranoia mode

Let’s face it, why should you trust rmlint?

Technically it only computes a hash of your file which might, by it’s nature, collide with the hash of a totally different
file. If we assume a perfect hash function (i.e. one that distributes it’s hash values perfectly even over all possible
values), the probablilty of having a hash-collision is 1

2160 for the default 160-bit hash. Of course hash functions are not
totally random, so the collision probability is slightly higher. Due to the "birthday paradox", collision starts to become
a real risk if you have more than about 280 files of the same size.

If you’re wary, you might want to make a bit more paranoid than the default. By default the sha1 hash algorithm is
used, which we consider a good trade-off of speed and accuracy. rmlint’s paranoia level can be easily inc/decreased
using the -p (--paranoid)/ -P (--less-paranoid) option (which might be given twice each).

Here’s what they do in detail:

• -p is equivalent to --algorithm=sha512

• -pp is equivalent to --algorithm=paranoid

As you see, it just enables a certain duplicate detection algorithm to either use a stronger hash function or to do a byte-
by-byte comparison. While this might sound slow it’s often only a few seconds slower than the default behaviour.

There is a bunch of other hash functions you can lookup in the manpage. We recommend never to use the -P option.

Note: Even with the default options, the probability of a false positive doesn’t really start to get significant until
you have around 1,000,000,000,000,000,000,000,000 different files all of the same file size. Bugs in rmlint are
sadly (or happily?) more likely than hash collisions. See http://preshing.com/20110504/hash-collision-probabilities/
for discussion.

2.5 Original detection / selection

As mentioned before, rmlint divides a group of dupes in one original and one or more duplicates of that one. While
the chosen original might not be the one that was there first, you generally want to select one file to keep from each
duplicate set.

By default, if you specify multiple paths in the rmlint command, the files in the first-named paths are treated as more
"original" than the later named paths. If there are two files in the same path, then the older one will be treated as the
original. If they have the same modification time then it’s just a matter of chance which one is selected as the original.

The way rmlint chooses the original can be customised by the -S (--rank-by) option.

Here’s an example:

2.4. Paranoia mode 13

http://preshing.com/20110504/hash-collision-probabilities/

rmlint documentation, Release

Normal run:
$ rmlint
ls c
rm a
rm b

Use alphabetically first one as original
$ rmlint -S a
ls a
rm b
rm c

Alphabetically first makes sense in the case of backup files, ie a.txt.bak comes after a.txt.

Here’s a table of letters you can supply to the -S option:

m keep lowest mtime (oldest) M keep highest mtime (newest)
a keep first alphabetically A keep last alphabetically
p keep first named path P keep last named path
d keep path with lowest depth D keep path with highest depth
l keep path with shortest basename L keep path with longest basename

The default setting is -S pm. Multiple sort criteria can be specified, eg -S mpa will sort first by mtime, then (if tied),
based on which path you specified first in the rmlint command, then finally based on alphabetical order of file name.
Note that "original directory" criteria (see below) take precedence over any -S options.

2.5.1 Flagging original directories

Sometimes you have a specific path that only contains originals, or only contains backups. In this case you can flag
directories on the commandline by using a special separator (//) between the duplicate and original paths. Every path
after the // separator is considered to be "tagged" and will be treated as an original where possible. Tagging always
takes precedence over the -S options above.

$ rmlint a // b
ls b/file
rm a/file

If there are more than one tagged files in a duplicate group then the highest ranked (per -S options) will be kept.
In order to never delete any tagged files, there is the -k (--keep-all-tagged) option. A slightly more esoteric
option is -m (--must-match-tagged), which only looks for duplicates where there is an original in a tagged path.

Here’s a real world example using these features: You have an portable backup drive with some old backups on it. You
have just backed up your home folder to a new backup drive. You want to reformat the old backup drive and use it for
something else. But first you want to check that there is nothing on the old drive that you don’t have somewhere else.
The old drive is mounted at /media/portable.

Find all files on /media/portable that can be safely deleted:
$ rmlint --keep-all-tagged --keep-all-tagged /media/portable // ~
check the shellscript looks ok:
$ less ./rmlint.sh # or use gedit or any other viewer/editor
run the shellscript to delete the redundant backups
$./rmlint.sh
run again (to delete empty dirs)
$ rmlint -km /media/portable // ~
$./rmlint.sh

14 Chapter 2. Gentle Guide to rmlint

rmlint documentation, Release

see what files are left:
$ tree /media/portable
recover any files that you want to save, then you can safely reformat the drive

In the case of nested mountpoints, it may sometimes makes sense to use the opposite variations, -K
(--keep-all-untagged) and -M (--must-match-untagged).

2.6 Finding duplicate directories

Note: --merge-directories is still an experimental option that is non-trivial to implement. Please double
check the output and report any possible bugs.

As far as we know, rmlint is the only duplicate finder that can do this. Basically, all you have to do is to specify
the -D (--merge-directories) option and rmlint will cache all duplicates until everything is found and then
merge them into full duplicate directories (if any). All other files are printed normally.

This may sound simple after all, but there are some caveats you should know of.

Let’s create a tricky folder structure to demonstrate the feature:

$ mkdir -p fake/one/two/ fake/one/two_copy fake/one_copy/two fake/one_copy/two_copy
$ echo xxx > fake/one/two/file
$ echo xxx > fake/one/two_copy/file
$ echo xxx > fake/one_copy/two/file
$ echo xxx > fake/one_copy/two_copy/file
$ echo xxx > fake/file
$ echo xxx > fake/another_file

Now go run rmlint on it like that:

$ rmlint fake -D -S a
Duplicate Directorie(s):

ls -la /home/sahib/rmlint/fake/one
rm -rf /home/sahib/rmlint/fake/one_copy
ls -la /home/sahib/rmlint/fake/one/two
rm -rf /home/sahib/rmlint/fake/one/two_copy

Duplicate(s):
ls /home/sahib/rmlint/fake/another_file
rm /home/sahib/rmlint/fake/one/two/file
rm /home/sahib/rmlint/fake/file

==> In total 6 files, whereof 5 are duplicates in 1 groups.
==> This equals 20 B of duplicates which could be removed.

As you can see it correctly recognized the copies as duplicate directories. Also, it did not stop at fake/one but also
looked at what parts of this original directory could be possibly removed too.

Files that could not be merged into directories are printed separately. Note here, that the original is taken from a
directory that was preserved. So exactly one copy of the xxx-content file stays on the filesystem in the end.

rmlint finds duplicate directories by counting all files in the directory tree and looking up if there’s an equal amount
of duplicate and empty files. If so, it tries the same with the parent directory.

2.6. Finding duplicate directories 15

rmlint documentation, Release

Some file like hidden files will not be recognized as duplicates, but still added to the count. This will of course lead
to unmerged directories. That’s why the -D option implies the -r (--hidden) and -l (--hardlinked) option in
order to make this convenient.

A note to symbolic links: The default behaviour with –merge-directories is to not follow symbolic links, but to compare
the link targets. If the target is the same, the link will be the same. This is a sane default for duplicate directories, since
twin copies often are created by doing a backup of some files. In this case any symlinks in the backed-up data will still
point to the same target. If you have symlinks that reference a file in each respective directory tree, consider using -f.

Warning: Do never ever modify the filesystem (especially deleting files) while running with the -D option. This
can lead to mismatches in the file count of a directory, possibly causing dataloss. You have been warned!

Sometimes it might be nice to only search for duplicate directories, banning all the sole files from littering the screen.
While this will not delete all files, it will give you a nice overview of what you copied where.

Since duplicate directories are just a lint type as every other, you can just pass it to -T: -T "none +dd" (or -T
"none +duplicatedirs"). There’s also a preset of it to save you some typing: -T minimaldirs.

Warning: Also take note that -D will cause a higher memory footprint and might add a bit of processing time.
This is due to the fact that all files need to be cached till the end and some other internal data structures need to be
created.

2.7 Replaying results

Often it is useful to just re-output the results you got from rmlint. That’s kind of annoying for large datasets,
especially when you have big files.

The usage of the --replay feature is best understood by example:

$ rmlint real-large-dir --progress
... lots of output ...
$ cp rmlint.json large.json # Save json, so we don't overwrite it.
$ rmlint --replay large.json real-large-dir
... same output, just faster ...
$ rmlint --replay large.json --size 2M-512M --sort-by sn real-large-dir
... filter stuff; and rank by size and by size and groupsize
$ rmlint --replay large.json real-large-dir/subdir
... only show stuff in /subdir ...

Warning: Details may differ

The generated output might differ slightly in order and details. For example the total number of files in the replayed
runs will be the total of entries in the json document, not the total number of traversed files.

Also be careful when replaying on a modified filesystem. rmlint will ignore files with newer mtime than in the
.json file for safety reason.

Warning: Not all options might work

Options that are related to traversing and hashing/reading have no effect. Those are:

16 Chapter 2. Gentle Guide to rmlint

rmlint documentation, Release

• –followlinks

• –algorithm and –paranoid

• –clamp-low

• –hardlinked

• –write-unfinished

• all other caching options.

2.8 Miscellaneous options

If you read so far, you know rmlint pretty well by now. Here’s just a list of options that are nice to know, but not
essential:

• Consecutive runs of rmlint can be speed up by using --xattr-read.

$ rmlint large_dataset/ --xattr-write --write-unfinished
$ rmlint large_dataset/ --xattr-read

Here, the second run should (or might) run a lot faster. But be sure to read the caveats stated in the manpage!

• -r (--hidden): Include hidden files and directories. The default is to ignore these, to save you from destroy-
ing git repositories (or similar programs) that save their information in a .git directory where rmlint often
finds duplicates.

If you want to be safe you can do something like this:

$ # find all files except everything under .git or .svn folders
$ find . -type d | grep -v '\(.git\|.svn\)' | rmlint - --hidden

But you would have checked the output anyways, wouldn’t you?

• If something ever goes wrong, it might help to increase the verbosity with -v (up to -vvv).

• Usually the commandline output is colored, but you can disable it explicitly with -w (--with-color). If
stdout or stderr is not an terminal anyways, rmlint will disable colors itself.

• You can limit the traversal depth with -d (--max-depth):

$ rmlint -d 0
<finds everything in the same working directory>

• If you want to prevent rmlint from crossing mountpoints (e.g. scan a home directory, but no the HD mounted
in there), you can use the -x (--no-crossdev) option.

• It is possible to tell rmlint that it should not scan the whole file. With -q (--clamp-low) / -Q
(--clamp-top) it is possible to limit the range to a starting point (-q) and end point (-Q). The point where
to start might be either given as percent value, factor (percent / 100) or as an absolute offset.

If the file size is lower than the absolute offset, the file is simply ignored.

This feature might prove useful if you want to examine files with a constant header. The constant header might
be different, i.e. by a different ID, but the content might be still the same. In any case it is advisable to use this
option with care.

Example:

2.8. Miscellaneous options 17

http://rmlint.readthedocs.org/en/latest/rmlint.1.html

rmlint documentation, Release

Start hashing at byte 100, but not more than 90% of the filesize.
$ rmlint -q 100 -Q .9

18 Chapter 2. Gentle Guide to rmlint

CHAPTER 3

Graphical user interface

As of rmlint ≥ 2.4.0 a GUI frontend called Shredder is shipped alongside of rmlint. It is written in Python
and uses no external dependencies beside gtk+ ≥ 3.14 and PyGObject.

Warning: The user interface is still in development. Use at your own risk! There is a safety net though: Every
file will be re-checked before it’s deletion.

3.1 Installation

If you compiled rmlint from source, sconswill try to build and install the GUI, except you pass --without-gui
to it.

3.2 Usage

The GUI can be started via rmlint --gui.The application is divided into several views that guide you through the
duplicate finding process.

19

rmlint documentation, Release

3.3 Developers

3.3.1 Location view

Shows a list of locations the user might want to scan. A number of locations is guessed from the list of mounted
volumes, recently used files and a static set of paths. The user can of course add a new location via a filebrowser.

The user can select one or multiple paths and hit Scan. In prior he might choose to prefer certain paths, so only files in
non-preferred paths are deleted if they have a twin in a preferred path.

3.3.2 Runner view

After hitting scan in the locations view, the application will start rmlint in the background. The output will be
shown live in the treeview on the left.

20 Chapter 3. Graphical user interface

rmlint documentation, Release

Once finished, a chart will be shown on the right that shows how the duplicates are distributed over the scanned
directories. The treeview will show the detailed list of found files. A red cross will indicate that Shredder wants to
delete this file, a green checkmark will make it keep it. The user can edit those to his liking.

Additionally, the view can be filtered after a search query. In the simplest case this filters by a path element, in more
complex usecases you can also filter by size, mtime and twincount. The latter can be done by adding size:10K or
size:1M-2M,3M-4M to the query (similar with mtime: and count:)

Once happy with the results, the user can generate a script out of the results (all or just those that are visible).

3.3.3 Editor view

A source editor will show the generated script. It can be edited and searched through. Apart from that, the file can be
saved not only a .sh file, but also as .csv and .json file.

The user can now choose to save the script and execute it himself, or to click the Run Script button. If this button
is blue, it indicates a dry run, where nothing will be deleted. A red button however will kill your files. In any way, a
running counter of deleted bytes will be shown.

3.3. Developers 21

rmlint documentation, Release

3.3.4 Settings view

The settings view is the leftmost view and will not be shown by default in the process. It can always be accessed by:

• Going to the leftmost view.

• Hitting the Settings menu entry.

• Hit the gear button in the runner view.

Normal user probably do not need to adjust anything. The options shown here, resemble the option that may be given
to the commandline of rmlint.

3.3.5 Design

The design loosely follows the Gnome Human Interface Guidelines.*0 Beside the appeareance, this means that the
program should be easy and intuitive to use. Suggested actions should be clear to recognize and the application should
always be responsive and never just do work in the background.

3.3.6 Internal

Shredder works by forking off rmlint and reading it’s json output in parallel. The script generation works by
calling rmlint --replay on the generated json file, since this is the only sane way to filter the results of all
formats properly.

0 https://developer.gnome.org/hig/stable/

22 Chapter 3. Graphical user interface

https://developer.gnome.org/hig/stable/

CHAPTER 4

Cautions (or why it’s hard to write a dupefinder)

This section covers good practice for safe duplicate removal. It is not intended to be specifically related to rmlint.
It includes general discussion on duplicate detection and shows, by example, some of the traps that duplicate finders
can fall into. This section might not only be useful for developers of dupe finders, but also educational for users that
strive for best practices regarding deduplication.

4.1 Good Practice when Deleting Duplicates

4.1.1 Backup your data

There is a wise adage, "if it’s not backed up, it’s not important". It’s just good practice to keep your important data
backed up. In particular, any time you are contemplating doing major file reorganisations or deletions, that’s a good
time to make sure that your backups are up to date.

What about when you want to clean up your backups by deleting duplicate files from your backup drive? Well as long
as your duplicate file finder is reliable, you shouldn’t have any problems. Consider replacing the duplicate with a link
(hardlink, symlink or reflink) to the original data. This still frees up the space, but makes it easier to find the file if and
when it comes time to restore files from backup.

4.1.2 Measure twice, cut once

This is a popular saying amongst builders; the same goes for your files. Do at least some sort of sanity check on which
files are going to be deleted. All duplicate file finders (including rmlint) are capable of identifying false positives
or more serious bugs.

4.1.3 Beware of unusual filename characters

Even a space in a filename is capable of causing grief. Make sure your file deletion command (or the one used by your
duplicate finder) has the filename properly escaped.

23

https://github.com/MrMEEE/bumblebee-Old-and-abbandoned/issues/123

rmlint documentation, Release

4.1.4 Consider safe removal options

Rather than deleting duplicates, consider moving them to a holding area or trash folder. The trash-cli utility is one
option for this. Alternatively if using the rmlint shell script you can replace the remove_cmd section as follows
to move the files to /tmp:

remove_cmd() {
echo 'Deleting:' "$1"
if original_check "$1" "$2"; then

if [-z "$DO_DRY_RUN"]; then
was: rm -rf "$1"
mv -p "$1" "/tmp$1"

fi
fi

}

Another safe alternative, if your files are on a btrfs filesystem and you have linux kernel 4.2 or higher, is to reflink
the duplicate to the original. You can do this via cp --reflink or using rmlint --btrfs-clone:

$ cp --reflink=always original duplicate # deletes dupicate and replaces it with
→˓reflink copy of original
$ rmlint --btrfs-clone original duplicate # does and in-place clone

If you pass -c sh:link to rmlint, it will even check for you if your filesystem is capable of reflinks and emit the
correct command conveniently.

The second option is actually safer because it verifies (via the kernel) that the files are identical before creating the
reflink. Also it does not change the mtime or other metadata of the duplicate.

You might think hardlinking as a safe alternative to deletion, but in fact hardlinking first deletes the duplicate and then
creates a hardlink to the original in its place. If your duplicate finder has found a false positive, it is possible that you
may lose your data.

4.2 Attributes of a Robust Duplicate Finder

(also known as "Traps for young dupe finders")

4.2.1 Traversal Robustness

Path Doubles

One simple trap for a dupe finder is to not realise that it has reached the same file via two different paths. This can
happen due to user inputting overlapping paths to traverse, or due to symlinks or other filesystem loops such as bind
mounts. Here’s a simple "path double" example trying to trick a duplicate file finder by "accidentally" feeding it the
same path twice. We’ll use fdupes for this example:

$ mkdir dir
$ echo "important" > dir/file
$ fdupes -r --delete --noprompt dir dir
[no output]
$ ls dir
file

So far so good, fdupes didn’t fall for the trick. It has a check built-in which looks at the files’ device and inode
numbers, which automatically filters out path doubles.

24 Chapter 4. Cautions (or why it’s hard to write a dupefinder)

http://github.com/andreafrancia/trash-cli
https://github.com/adrianlopezroche/fdupes

rmlint documentation, Release

Let’s try again using the -H option to find hardlinked duplicates:

$ fdupes -r -H --delete --noprompt dir dir
[+] dir/file
[-] dir/file

$ ls -l dir/
total 0

Oh dear, our file is gone! The problem is that hardlinks share the same device and inode numbers, so the inode check
is turned off for this option.

Dupe finders rdfind and dupd can also be tricked with the right combination of settings:

$ rdfind -removeidentinode false -deleteduplicates true a a
[snip]
Now deleting duplicates:
Deleted 1 files.
$ ls -l dir/
total 0

$ dupd scan --path /home/foo/a --path /home/foo/a
Files scanned: 2
Total duplicates: 2
Run 'dupd report' to list duplicates.
$ dupd report
Duplicate report from database /home/foo/.dupd_sqlite:
20 total bytes used by duplicates:

/home/foo/a/data
/home/foo/a/data

Solution:

For a duplicate finder to be able to find hardlinked duplicates, without also inadvertently identifying a file as a duplicate
or itself, a more sophisticated test is required. Path doubles will always have:

• matching device and inode.

• matching basename.

• parent directories also have matching device and inode.

That seems pretty fool-proof (see rmlint example below) but please file an issue on our Issue Tracker if you find an
exception.

$ echo "data" > dir/file
$ # rmlint with default settings:
$ rmlint dir dir
==> In total 2 files, whereof 0 are duplicates in 0 groups.
==> This equals 0 B of duplicates which could be removed.
$
$ # rmlint with hardlink duplicate detection enabled:
$ rmlint --hardlinked dir dir
==> In total 2 files, whereof 0 are duplicates in 0 groups.
==> This equals 0 B of duplicates which could be removed.
$ ls dir
file

Symlinks:

"Ah but I’m not silly enough to enter the same path twice" you say. Well maybe so, but there are other ways that folder
traversal can reach the same path twice, for example via symbolic links:

4.2. Attributes of a Robust Duplicate Finder 25

https://github.com/sahib/rmlint/issues

rmlint documentation, Release

$ mkdir dir
$ echo "important" > dir/file
$ ln -s dir link
$ fdupes -r --delete --noprompt .
$ ls -l dir/
total 0

Symlinks can make a real mess out of filesystem traversal:

$ mkdir dir
$ cd dir
$ ln -s . link
$ cd ..
$ echo "data" > dir/file
$ fdupes -rHs dir
dir/file
dir/link/file
dir/link/link/file
[snip]
dir/link/link/link/link/link/link/link/link/link/link/link/link/link/link/link/link/
→˓link/link/link/link/link/link/link/link/link/link/link/link/link/link/link/link/
→˓link/link/link/link/link/link/link/link/file

Set 1 of 1, preserve files [1 - 41, all]:

Solution:

During traversal, the duplicate finder should keep track of all folders visited (by device and inode number). Don’t
re-traverse folders that were already traversed.

Hardlinks:

Also as noted above, replacing duplicates with hardlinks can still end badly if there are false positives. For example,
using rdfind’s the -makehardlinks option:

$ echo "data" > dir/file
$ rdfind -removeidentinode false -makehardlinks true dir dir
[snip]
It seems like you have 2 files that are not unique
Totally, 5 b can be reduced.
Now making results file results.txt
Now making hard links.
failed to make hardlink dir/file to dir/file
$ ls -l dir
total 0

Solution:

Don’t find false positives. Check files are on same filesystem before trying to create hardlink. Temporarily rename the
duplicate before creating the hardlink and then deleting the renamed file.

4.2.2 Collision Robustness

Duplicate detection by file hash

If a duplicate finder uses file hashes to identify duplicates, there is a very small risk that two different files have the
same hash value. This is called a hash collision and can result in the two files being falsely flagged as duplicates.

26 Chapter 4. Cautions (or why it’s hard to write a dupefinder)

rmlint documentation, Release

Several duplicate finders use the popular MD5 Hash, which is 128 bits long. With a 128-bit hash, if you have a million
sets of same-size files, each set containing a million different files, the chance of a hash collision is about 0.000
000 000 000 000 000 147%. To get a 0.1% chance of a hash collision you would need nine hundred thousand
million (9× 1011) groups of (9× 1011) files each, or one group of eight hundred thousand million million (8× 1017)
files.

If someone had access to your files, and wanted to create a malicious duplicate, they could potentially do something
like this (based on http://web.archive.org/web/20071226014140/http://www.cits.rub.de/MD5Collisions/):

$ mkdir test && cd test
$ # get two different files with same md5 hash:
$ wget http://web.archive.org/web/20071226014140/http://www.cits.rub.de/imperia/md/
→˓content/magnus/order.ps
$ wget http://web.archive.org/web/20071226014140/http://www.cits.rub.de/imperia/md/
→˓content/magnus/letter_of_rec.ps
$ md5sum * # verify that they have the same md5sum
a25f7f0b29ee0b3968c860738533a4b9 letter_of_rec.ps
a25f7f0b29ee0b3968c860738533a4b9 order.ps
$ sha1sum * # verify that they are not actually the same
07835fdd04c9afd283046bd30a362a6516b7e216 letter_of_rec.ps
3548db4d0af8fd2f1dbe02288575e8f9f539bfa6 order.ps
$ rmlint -a md5 . -o pretty # run rmlint using md5 hash for duplicate file detection
Duplicate(s):

ls '/home/foo/test/order.ps'
rm '/home/foo/test/letter_of_rec.ps'

$ rmlint test -o summary # run using default sha1 hash
==> In total 2 files, whereof 0 are duplicates in 0 groups.

If your intention was to free up space by hardlinking the duplicate to the original, you would end up with two
hardlinked files, one called order.ps and the other called letter_of_rec.ps, both containing the contents
of order.ps.

Solution:

fdupes detects duplicates using MD5 Hashes, but eliminates the collision risk by doing a byte-wise comparison of
the duplicates detected. This means each file is read twice, which can tend to slow things down.

dupd uses direct file comparison, unless there are more than 3 files in a set of duplicates, in which case it uses MD5
only.

rmlint’s default option uses a 160-bit SHA1 hash which means you need at least 5.4 × 1022 files before you get a
0.1% probability of collision. rmlint’s -p option uses SHA512 (5.2 × 1075 files for 0.1% risk), while rmlint’s
-pp option uses direct file comparison to eliminate the risk altogether. Refer to the Benchmarks chapter for speed and
memory overhead implications.

4.2.3 Unusual Characters Robustness

Spaces, commas, nonprinting characters etc can all potentially trip up a duplicate finder or the subsequent file deletion
command. For example:

$ mkdir test
$ echo "data" > 'test/\t\r\"\b\f\\,.'
$ cp test/\\t\\r\\\"\\b\\f\\\\\,. test/copy # even just copying filenames like this
→˓is ugly!
$ ls -1 test/
copy
\t\r\"\b\f\\,.
$ md5sum test/* # md5's output gets a little bit mangled by the odd characters

4.2. Attributes of a Robust Duplicate Finder 27

http://web.archive.org/web/20071226014140/http://www.cits.rub.de/MD5Collisions/

rmlint documentation, Release

6137cde4893c59f76f005a8123d8e8e6 test/copy
\6137cde4893c59f76f005a8123d8e8e6 test/\\t\\r\\"\\b\\f\\\\,.
$ dupd scan --path /home/foo/test
SKIP (comma) [/home/foo/test/\t\r\"\b\f\\,.]
Files scanned: 1
Total duplicates: 0

Solution: Be careful!

4.2.4 "Seek Thrash" Robustness

Duplicate finders use a range of strategies to find duplicates. It is common to reading and compare small increments
of potential duplicates. This avoids the need to read the whole file if the files differ in the first few megabytes, so this
can give a major speedup in some cases. However, in the case of hard disk drives, constantly reading small increments
from several files at the same time causes the hard drive head to have to jump around ("seek thrash").

Here are some speed test results showing relative speed for scanning my /usr folder (on SSD) and a HDD copy of
same. The speed ratio gives an indication of how effectively the search algorithm manages disk seek overheads:

Program /usr (SSD) /mnt/usr (HDD) Ratio
dupd 48s 1769s 36.9
fdupes 65s 486s 7.5
rmlint 38s 106s 2.8
rmlint -pp 40s 139s 3.5

Note: Before each run, disk caches were cleared:

$ sync && echo 3 | sudo tee /proc/sys/vm/drop_caches

Solution:

Achieving good speeds on HDD’s requires a balance between small file increments early on, then switching to bigger
file increments. Fiemap information (physical location of files on the disk) can be used to sort the files into an order
that reduces disk seek times.

4.2.5 Memory Usage Robustness

When scanning very large filesystems, duplicate finders may have to hold a large amount of information in memory
at the same time. Once this information exceeds the computers’ RAM, performance will suffer signficantly. dupd
handles this quite nicely by storing a lot of the data in a sqlite database file, although this may have a slight performance
penalty due to disk read/write time to the database file. rmlint uses a path tree structure to reduce the memory
required to store all traversed paths.

28 Chapter 4. Cautions (or why it’s hard to write a dupefinder)

CHAPTER 5

Frequently Asked Questions

5.1 rmlint finds more/less dupes than tool X!

Make sure that none of the following applies to you:

Both tools might investigate a different number of files. rmlint e.g. does not look through hidden files by default,
while other tools might follow symlinks by default. Suspicious options you should look into are:

• --hidden: Disabled by default, since it might screw up .git/ and similar directories.

• --hardlinked: Might find larger amount files, but not more lint itself.

• --followlinks: Might lead rmlint to different places on the filesystem.

• --merge-directories: pulls in both --hidden and --hardlinked.

If there’s still a difference, check with another algorithm. In particular use -pp to enable paranoid mode. Also make
sure to have -D (--merge-directories) disabled to see the raw number of duplicate files.

Still here? Maybe talk to us on the issue tracker.

5.2 Can you implement feature X?

Depends. Go to to the issue tracker and open a feature request.

Here is a list of features where you probably have no chance:

• Port it to Windows.

• Find similar files like ssdeep does.

29

https://github.com/sahib/rmlint/issues
https://github.com/sahib/rmlint/issues

rmlint documentation, Release

5.3 I forgot to add some options before running on a large dataset.
Do I need to re-run it?

Probably not. Since rmlint 2.3.0 there is --replay which can be used to to re-output a json file of a prior run.

If you have changed the filesystem that might not be a good idea of course. In this case you’ll have to re-run, but it’s
not as bad as it sounds though. Your filesystem is probably very good at caching.

If you only want to see the difference to what changed since last time you can look into -n --newer-than-stamp
/ -N --newer-than.

In some cases you might really need to re-run, but if that happens often, you might look into --xattr-write and
--xattr-read which is capable of writing finished checksums to extended attributes of each processed file.

5.4 I have a very large number of files and I run out of memory and
patience.

As a rule of thumb, rmlint will allocate ~150 bytes for every file it will investigate. Additionally paths are stored in
a patricia trie, which will compress paths and save memory therefore.

The memory peak is usually shortly after it finished traversing all files. For example, 5 million files will result in a
memory footprint of roughly 1.0GB of memory in average.

Some things to consider:

• Enable the progress bar with -g to keep track of how much data is left to scan.

Also:

rmlint have been successfully used on datasets of 5 million files. See this bug report for more information: #109.

If you have usage questions or find weird behaviour, you can also try to reach us via IRC in #rmlint on irc.
freenode.net.

Since version 2.4.0 we also feature an optional graphical user interface:

30 Chapter 5. Frequently Asked Questions

https://github.com/sahib/rmlint/issues/109

CHAPTER 6

Informative reference

These chapters are informative and are not essential for the average user. People that want to extend rmlint might
want to read this though:

6.1 Developer’s Guide

This guide is targeted to people that want to write new features or fix bugs in rmlint.

6.1.1 Bugs

Please use the issue tracker to post and discuss bugs and features:

https://github.com/sahib/rmlint/issues

6.1.2 Philosophy

We try to adhere to some principles when adding features:

• Try to stay compatible to standard unix’ tools and ideas.

• Try to stay out of the users way and never be interactive.

• Try to make scripting as easy as possible.

• Never make rmlint modify the filesystem itself, only produce output to let the user easily do it.

Also keep this in mind, if you want to make a feature request.

6.1.3 Making contributions

The code is hosted on GitHub, therefore our preferred way of receiving patches is using GitHub’s pull requests (normal
git pull requests are okay too of course).

31

https://github.com/sahib/rmlint/issues

rmlint documentation, Release

Note: origin/master should always contain working software. Base your patches and pull requests always on
origin/develop.

Here’s a short step-by-step:

1. Fork it.

2. Create a branch from develop. (git checkout develop && git checkout -b my_feature)

3. Commit your changes. (git commit -am "Fixed it all.")

4. Check if your commit message is good. (If not: git commit --amend)

5. Push to the branch (git push origin my_feature)

6. Open a Pull Request.

7. Enjoy a refreshing Tea and wait until we get back to you.

Here are some other things to check before submitting your contribution:

• Does your code look alien to the other code? Is the style the same? You can run this command to make sure it
is the same:

$ clang-format -style=file -i $(find lib src -iname '*.[ch]')

• Do all tests run? Go to the test documentation for more info. Also after opening the pull request, your code will
be checked via TravisCI.

• Is your commit message descriptive? whatthecommit.com has some good examples how they should not look
like.

• Is rmlint running okay inside of valgrind (i.e. no leaks and no memory violations)?

For language-translations/updates it is also okay to send the .po files via mail at sahib@online.de, since not every
translator is necessarily a software developer.

6.1.4 Testsuite

rmlint has a not yet complete but quite powerful testsuite. It is not complete yet (and probably never will), but it’s
already an valueable boost of confidence in rmlint's correctness.

The tests are based on nosetest and are written in python>=3.0. Every testcase just runs the (previously built)
rmlint binary a and parses it’s json output. So they are technically blackbox-tests.

On every commit, those tests are additionally run on TravisCI.

Control Variables

The behaviour of the testsuite can be controlled by certain environment variables which are:

• RM_TS_DIR: Testdir to create files in. Can be very large with some tests, sometimes tmpfs might therefore
slow down your computer. By default /tmp will be used.

• RM_TS_USE_VALGRIND: Run each test inside of valgrind’s memcheck. (slow)

• RM_TS_USE_GDB: Run tests inside of gdb. Fatal signals will trigger an backtrace.

• RM_TS_PEDANTIC: Run each test several times with different optimization options and check for errors be-
tween the runs. (slow).

32 Chapter 6. Informative reference

https://github.com/sahib/rmlint
http://github.com/sahib/rmlint/pulls
https://github.com/sahib/rmlint/blob/develop/tests/README.rst
https://travis-ci.org/sahib/rmlint
http://whatthecommit.com/
mailto:sahib@online.de
https://travis-ci.org/sahib/rmlint

rmlint documentation, Release

• RM_TS_SLEEP: Waits a long time before executing a command. Useful for starting the testcase and manually
running rmlint on the priorly generated testdir.

• RM_TS_PRINT_CMD: Print the command that is currently run.

• RM_TS_KEEP_TESTDIR: If a test failed, keep the test files.

Additionally slow tests can be omitted with by appending -a '!slow' to the commandline. More information on
this syntax can be found on the nosetest documentation.

Before each release we call the testsuite (at least) like this:

$ sudo RM_TS_USE_VALGRIND=1 RM_TS_PRINT_CMD=1 RM_TS_PEDANTIC=1 nosetests-3.4 -s -a '!
→˓slow'

The sudo here is there for executing some tests that need root access (like the creating of bad user and group ids).
Most tests will work without.

Coverage

To see which functions need more testcases we use gcov to detect which lines were executed (and how often) by the
testsuite. Here’s a short quickstart using lcov:

$ CFLAGS="-fprofile-arcs -ftest-coverage" LDFLAGS="-fprofile-arcs -ftest-coverage"
→˓scons -j4 DEBUG=1
$ sudo RM_TS_USE_VALGRIND=1 RM_TS_PRINT_CMD=1 RM_TS_PEDANTIC=1 nosetests-3.4 -s -a '!
→˓slow'
$ lcov --capture --directory . --output-file coverage.info
$ genhtml coverage.info --output-directory out

The coverage results are updated from time to time here:

http://sahib.github.io/rmlint/gcov/index.html

Structure

tests
test_formatters # Tests for output formatters (like sh or json)
test_options # Tests for normal options like --merge-directories etc.
test_types # Tests for all lint types rmlint can find
utils.py # Common utilities shared amon tests.

Templates

A template for a testcase looks like this:

from nose import with_setup
from tests.utils import *

@with_setup(usual_setup_func, usual_teardown_func)
def test_basic():

create_file('xxx', 'a')
create_file('xxx', 'b')

head, *data, footer = run_rmlint('-a city -S a')

6.1. Developer’s Guide 33

http://nose.readthedocs.org/en/latest/plugins/attrib.html
http://sahib.github.io/rmlint/gcov/index.html

rmlint documentation, Release

assert footer['duplicate_sets'] == 1
assert footer['total_lint_size'] == 3
assert footer['total_files'] == 2
assert footer['duplicates'] == 1

Rules

• Test should be able to run as normal user.

• If that’s not possible, check at the beginning of the testcase with this:

if not runs_as_root():
return

• Regressions in rmlint should get their own testcase so they do not appear again.

• Slow tests can be marked with a slow attribute:

from nose.plugins.attrib import attr

@attr('slow')
@with_setup(usual_setup_func, usual_teardown_func)
def test_debian_support():

assert random.choice([True, False]):

6.1.5 Buildsystem Helpers

Environment Variables

CFLAGS Extra flags passed to the compiler.

LDFLAGS Extra flags passed to the linker.

CC Which compiler to use?

Use clang and enable profiling, verbose build and enable debugging
CC=clang CFLAGS='-pg' LDFLAGS='-pg' scons VERBOSE=1 DEBUG=1

Variables

DEBUG Enable debugging symbols for rmlint. This should always be enabled during development.
Backtraces wouldn’t be useful elsewhise.

VERBOSE Print the exact compiler and linker commands. Useful for troubleshooting build errors.

Arguments

–prefix Change the installation prefix. By default this is /usr, but some users might prefer /usr/
local or /opt.

–actual-prefix This is mainly useful for packagers. The rmlint binary knows where it is installed
(which is needed to set e.g. the path to the gettext files). When installing a package, most of the time
the build is installed to a local test environment first before being packed to /usr. In this case the

34 Chapter 6. Informative reference

rmlint documentation, Release

--prefix would be set to the path of the temporary build env, while --actual-prefix would
be set to /usr.

–libdir Some distributions like Fedora use separate libdirectories for 64/32 bit. If this happens, you
should set the correct one for 64 bit with --libdir=lib64.

–without-libelf Do not link with libelf, which is needed for nonstripped binary detection.

–without-blkid Do not link with libblkid, which is needed to differentiate between normal rotational
harddisks and non-rotational disks.

–without-json-glib Do not link with libjson-glib, which is needed to load json-cache files. Without
this library a warning is printed when using --replay.

–without-fiemap Do not attempt to use the FIEMAP ioctl(2).

–without-gettext Do not link with libintl and do not compile any message catalogs.

All --without-* options come with a --with-* option that inverses its effect. By default rmlint is built with
all features available on the system, so you do not need to specify any --with-* option normally.

Notable targets

install Install all program parts system-wide.

config Print a summary of all features that will be compiled and what the environment looks like.

man Build the manpage.

docs Build the onlice html docs (which you are reading now).

test Build the tests (requires python and nosetest installed). Optionally valgrind can be installed
to run the tests through valgrind:

$ USE_VALGRIND=1 nosetests # or nosetests-3.3, python3 needed.

xgettext Extract a gettext .pot template from the source.

dist Build a tarball suitable for release. Save it under rmlint-$major-$minor-$patch.tar.gz.

release Same as dist, but reads the .version file and replaces the current version in the files that are
not built by scons.

6.1.6 Sourcecode layout

• All C-source lives in lib, the file names should be self explanatory.

• As an exception, the main lives in src/rmlint.c.

• All documentation is inside docs.

• All translation stuff should go to po.

• All packaging should be done in pkg/<distribution>.

• Tests are written in Python and live in tests.

6.1. Developer’s Guide 35

rmlint documentation, Release

6.1.7 Hashfunctions

Here is a short comparasion of the existing hashfunctions in rmlint (linear scale). For reference: Those plots were
rendered with these sources - which are very ugly, sorry.

If you want to add new hashfunctions, you should have some arguments why it is valueable and possibly even bench-
mark it with the above scripts to see if it’s really that much faster.

Also keep in mind that most of the time the hashfunction is not the bottleneck.

6.1.8 Optimizations

For sake of overview, here is a short list of optimizations implemented in rmlint:

Obvious ones

• Do not compare each file with each other by content, use a hashfunction to reduce comparison overhead drasti-
cally (introduces possibility of collisions though).

• Only compare files of same size with each other.

• Use incremental hashing, i.e. hash block-wise each size group and stop as soon a difference occurs or the file is
read fully.

• Create one reading thread for each physical disk. This gives a big speedup if files are roughly evenly spread over
multiple physical disks [note: currently using 2 reading threads per disk as a workaround for a speed regression
but hoping to fix this for rmlint 2.5].

• Disk traversal is similarly multi-threaded, one thread per disk.

• Create separate hashing threads (one for each file) so that the reader threads don’t have to wait for hashing to
catch up.

Subtle ones

• Check only executable files to be non-stripped binaries.

• Use preadv(2) based reading for small speeedups.

• Every thread in rmlint is shared, so only few calls to pthread_create are made.

Insane ones

• Use fiemap ioctl(2) to analyze the harddisk layout of each file, so each block can read it in perfect order
on a rotational device.

• Check the device ID of each file to see if it on a rotational (normal hard disks) or on a non-rotational device (like
a SSD). On the latter the fiemap optimisation is bypassed.

• Use a common buffer pool for IO buffers and recycle used buffers to reduce memory allocation overheads.

• Use only one hashsum per group of same-sized files.

• Implement paranoia check using the same algorithm as the incremental hash. The difference is that large chunks
of the file are read and kept in memory instead of just keeping the hash in memory. This avoids the need for a
two-pass algorithm (find matches using hashes then confirm via bytewise comparison). Each file is read once
only. This achieves bytewise comparison in O(N) time, even if there are large clusters of same-size files. The
downside is that it is somewhat memory-intensive (can be configured by --limit-mem option).

36 Chapter 6. Informative reference

https://raw.githubusercontent.com/sahib/rmlint/gh-pages/plots/hash_comparasion_log.png
https://raw.githubusercontent.com/sahib/rmlint/gh-pages/plots/hash_comparasion_lin.png
https://github.com/sahib/rmlint/tree/gh-pages/plots

rmlint documentation, Release

6.2 Translating rmlint

Rudimentary support for internationalization is provided via gettext. Also see this Issue for a list of translators,
current translations and a wish-list of new translations.

6.2.1 Adding new languages

Fork a new .po file from the po-template (here swedish):
$ msginit -i po/rmlint.pot -o po/se.po --locale se --no-translator

Edit the po/se.po file, the format is self describing
$ vim po/se.po

.po files need to be compiled, but that's handled by scons already.
$ scons
$ scons install

You should see your changes now:
$ LANG=se ./rmlint

If you’d like to contribute your new translation you want to do a pull request (if you really dislike that, you may also
send the translation to us via mail). Here is a small introduction on Pull Requests.

6.2.2 Updating existing languages

Edit the file to your needs:
$ vim po/xy.po

Install:
$ scons install

Done
$ LANG=xy ./rmlint

6.2.3 Marking new strings for translations

If you want to mark strings in the C-code to be translated, you gonna need to mark them so the xgettext can find
it. The latter tool goes through the source and creates a template file with all translations left out.

/* Mark the string with the _() macro */
fprintf(out, _("Stuff is alright: %s\n"), (alright) ? "yes" : "no");

It gets a little harder when static strings need to be marked, since they cannot be translated during compile time. You
have to mark them first and translate them at a later point:

static const char * stuff = _N("Hello World");

void print_world(void) {
printf("World is %s\n", _(stuff));

}

After you’re done with marking the new strings, you have to update the template:

6.2. Translating rmlint 37

https://github.com/sahib/rmlint/issues/146
http://rmlint.readthedocs.org/en/latest/developers.html

rmlint documentation, Release

scons can do this for you already:
$ scons xgettext

You need to add the new strings to the existing translations now:

$ msgmerge po/de.po po/rmlint.pot > po/de_new.po
$ EDITOR po/de_new.po # check if everything was merged alright.
$ mv po/de_new.po po/de.po

After that you can translate the new strings and proceed like in the upper steps.

6.3 Benchmarks

This page contains the images that our benchmark suite renders for the current release. Inside the benchmark suite,
rmlint is challenged against other popular and some less known duplicate finders. Apart from that a very dumb
duplicate finder called baseline.py is used to see how slow a program would be that would blindly hash all files
it finds. Luckily none of the programs is that slow. We’ll allow us a few remarks on the plots, although we focus a bit
on rmlint. You’re of course free to interpret something different or re-run the benchmarks on your own machine.
The exact version of each program is given in the plots.

It should be noted that it is very hard to compare these tools, since each tool investigated a slightly different amount of
data and produces different results on the dataset below. This is partly due to the fact that some tools count empty files
and hardlinks as duplicates, while rmlint does not. Partly it might also be false positives, missed files or, in some
tools, paths that contain a ’,’. For rmlint we verified that no false positives are in the set.

Here are some statistics on the datasets /usr and /mnt/music. /usr is on a btrfs filesystem that is located on a
SSD with many small files, while /mnt/music is located on a rotational disk with ext4 as filesystem. The amount
of available memory was 8GB.

$ du -hs /usr
7,8G /usr
$ du -hs /mnt/music
213G /mnt/music
$ find /usr -type f ! -empty | wc -l
284075
$ find /mnt/music -type f ! -empty | wc -l
37370
$ uname -a
Linux werkstatt 3.14.51-1-lts #1 SMP Mon Aug 17 19:21:08 CEST 2015 x86_64 GNU/Linux

Note: This plot uses logarithmic scaling for the time.

It should be noted that the first run is the most important run. At least for a rather large amount of data (here 211 GB),
it is unlikely that the file system has all relevant files in it’s cache. You can see this with the second run of baseline.
py - when reading all files the cache won’t be useful at such large file quantities. The other tools read only a partial
set of files and can thus benefit from caching on the second run. However rmlint (and also dupd) support fast re-
running (see rmlint-replay) which makes repeated runs very fast. It is interesting to see rmlint-paranoid
(no hash, incremental byte-by-byte comparison) to be mostly equally fast as the vanilla rmlint.

rmlint has the highest CPU footprint here, mostly due to it’s multithreaded nature. Higher CPU usage is not a bad
thing since it might indicate that the program spends more time hashing files instead of switching between hashing

38 Chapter 6. Informative reference

https://github.com/sahib/rmlint/issues/131
https://github.com/jvirkki/dupd/blob/master/src/scan.c#L83

rmlint documentation, Release

and reading. dupd seems to be pretty efficient here, especially on re-runs. rmlint-replay has a high CPU usage
here, but keep in mind that it does (almost) no IO and only has to repeat previous outputs.

The most memory efficient program here seems to be rdfind which uses even less than the bare bone baseline.
py (which does not much more than holding a hashtable). The well known fdupes is also low on memory footprint.

Before saying that the paranoid mode of rmlint is a memory hog, it should be noted (since this can’t be seen on
those plots) that the memory consumption scales very well. Partly because rmlint saves all paths in a Trie, making
it usable for ≥ 5M files. Also it is able to control the amount of memory it uses (--limit-mem). Due to the high
amount of internal data structures it however has a rather large base memory footprint.

dupd uses direct file comparison for groups of two and three files and hash functions for the rest. It seems to have a
rather high memory footprint in any case.

Surprisingly each tool found a different set of files. As stated above, direct comparison may not be possible here. For
most tools except rdfind and baseline.py it’s about in the same magnitude of files. fdupes seems to find
about the same amount as rmlint (with small differences). The reasons for this are not clear yet, but we’re looking
at it currently.

6.3.1 User benchmarks

If you like, you can add your own benchmarks below. Maybe include the following information:

• rmlint --version

• uname -a or similar.

• Hardware setup, in particular the filesystem.

• The summary printed by rmlint in the end.

• Did it match your expectations?

If you have longer output you might want to use a pastebin like gist.

6.4 rmlint

6.4.1 find duplicate files and other space waste efficiently

SYNOPSIS

rmlint [TARGET_DIR_OR_FILES ...] [//] [TAGGED_TARGET_DIR_OR_FILES ...] [-] [OPTIONS]

DESCRIPTION

rmlint finds space waste and other broken things on your filesystem.

Types of waste include: * Duplicate files and directories. * Nonstripped Binaries (Binaries with debug symbols). *
Broken links. * Empty files and directories. * Files with broken user or group id.

6.4. rmlint 39

https://en.wikipedia.org/wiki/Radix_tree
https://github.com/sahib/rmlint/issues/109
https://github.com/sahib/rmlint/issues/131#issuecomment-143387431
https://gist.github.com/

rmlint documentation, Release

rmlint will not delete any files. It does however produce executable output (for example a shell script) to help you
delete the files if you want to.

In order to find the lint, rmlint is given one or more directories to traverse. If no directories or files were given, the
current working directory is assumed. By default, rmlint will ignore hidden files and will not follow symlinks (see
traversal options below). rmlint will first find "other lint" and then search the remaining files for duplicates.

Duplicate sets will be displayed as an original and one or more duplicates. You can set criteria for how rmlint
chooses using the -S option (by default it chooses the first-named path on the command line, or if that is equal then
the oldest file based on mtime). You can also specify that certain paths only contain originals by naming the path after
the special path separator //.

Examples are given at the end of this manual.

OPTIONS

General Options

-T --types="list" (default: defaults)

Configure the types of lint rmlint will look for. The list string is a comma-separated list of lint
types or lint groups (other separators like semicolon or space also work).

One of the following groups can be specified at the beginning of the list:

• all: Enables all lint types.

• defaults: Enables all lint types, but nonstripped.

• minimal: defaults minus emptyfiles and emptydirs.

• minimaldirs: defaults minus emptyfiles, emptydirs and duplicates, but
with duplicatedirs.

• none: Disable all lint types [default].

Any of the following lint types can be added individually, or deselected by prefixing with a -:

• badids, bi: Find bad UID, GID or files with both.

• badlinks, bl: Find bad symlinks pointing nowhere.

• emptydirs, ed: Find empty directories.

• emptyfiles, ef: Find empty files.

• nonstripped, ns: Find nonstripped binaries.

• duplicates, df: Find duplicate files.

• duplicatedirs, dd: Find duplicate directories.

WARNING: It is good practice to enclose the description in quotes. In obscure cases argument
parsing might fail in weird ways.

-o --output=spec / -O --add-output=spec (default: -o sh:rmlint.sh -o pretty:stdout -o summary:stdout)

Configure the way rmlint outputs it’s results. A spec is in the form format:file or just
format. A file might either be an arbitrary path or stdout or stderr. If file is omitted,
stdout is assumed.

40 Chapter 6. Informative reference

rmlint documentation, Release

If -o is specified, rmlint’s defaults are overwritten. With --O the defaults are preserved. Ei-
ther -o or -O may be specified multiple times to get multiple outputs, including multiple
outputs of the same format.

For a list of formatters and their options, refer to the Formatters section below.

-c --config=spec[=value] (default: none) Configure a format. This option can be used to fine-
tune the behaviour of the existing formatters. See the Formatters section for details on the available
keys.

If the value is omitted it is set to a true value.

-z --perms[=[rwx]] (default: no check) Only look into file if it is readable, writable or executable
by the current user. Which one of the can be given as argument as one of "rwx".

If no argument is given, "rw" is assumed. Note that r does basically nothing user-visible since
rmlint will ignore unreadable files anyways. It’s just there for the sake of completeness.

By default this check is not done.

-a --algorithm=name (default: sha1)

Choose the algorithm to use for finding duplicate files. The algorithm can be either paranoid
(byte-by-byte file comparison) or use one of several file hash algorithms to identify duplicates.
The following well-known algorithms are available:

spooky, city, murmur, xxhash, md5, sha1, sha256, sha512, farmhash.

The above are all 128 bit except sha1 (160 bit), sha256 and sha512. There are also some com-
pound variations of the above functions:

• bastard: 256bit, combining city, and murmur.

• city256, city512, murmur256, murmur512: Use multiple 128-bit hashes with different seeds.

• spooky32, spooky64: Faster version of spooky with less bits.

-p --paranoid / -P --less-paranoid (default) Increase or decrease the paranoia of
rmlint’s duplicate algorithm.

• -p is equivalent to –algorithm=sha512

• -pp is equivalent to –algorithm=paranoid

• -P is equivalent to –algorithm bastard

• -PP is equivalent to –algorithm spooky

-v --loud / -V --quiet Increase or decrease the verbosity. You can pass these options several
times. This only affects rmlint’s logging on stderr, but not the outputs defined with -o. Passing
either option more than three times has no effect.

-g --progress / -G --no-progress (default) Convenience shortcut for -o progressbar
-o summary -o sh:rmlint.sh -VVV.

Note: This flag clears all previous outputs. Specify any additional outputs after this flag!

-D --merge-directories (default: disabled) Makes rmlint use a special mode where all found
duplicates are collected and checked if whole directory trees are duplicates. Use with caution: You
always should make sure that the investigated directory is not modified during rmlint’s or it’s
removal scripts run.

Output is deferred until all duplicates were found. Duplicate directories are printed first, followed
by any remaining duplicate files.

6.4. rmlint 41

rmlint documentation, Release

–rank-by applies for directories too, but ’p’ or ’P’ (path index) has no defined (i.e. useful) meaning.
Sorting takes only place when the number of preferred files in the directory differs.

NOTES:

• This option enables --partial-hidden and -@ (--see-symlinks) for convenience. If
this is not desired, you should change this after specifying -D.

• This feature might not deliver perfect result in corner cases.

• This feature might add some runtime.

-y --sort-by=order (default: none) During output, sort the found duplicate groups by criteria
described by order. order is a string that may consist of one or more of the following letters:

• s: Sort by size of group.

• a: Sort alphabetically by the basename of the original.

• m: Sort by mtime of the original.

• p: Sort by path-index of the original.

• o: Sort by natural found order (might be different on each run).

• n: Sort by number of files in the group.

The letter may also be written uppercase (similiar to -S / --rank-by) to reverse the sorting.
Note that rmlint has to hold back all results to the end of the run before sorting and printing.

--gui Start the optional graphical frontend to rmlint called Shredder.

This will only work when Shredder and it’s dependencies were installed. See also: http://rmlint.
readthedocs.org/en/latest/gui.html

The gui has it’s own set of options, see --gui --help for a list. These should be placed at
the end, ie rmlint --gui [options]

--hash

Make rmlint work as a multi-threaded file hash utility, similar to the popular md5sum or
sha1sum utilities, but faster.

A set of paths given on the commandline or from stdin is hashed using one of the available
hash algorithms. Use rmlint --hash -h to see options.

-w --with-color (default) / -W --no-with-color Use color escapes for pretty output or dis-
able them. If you pipe rmlints output to a file -W is assumed automatically.

-h --help / -H --show-man Show a shorter reference help text (-h) or this full man page (-H).

--version Print the version of rmlint. Includes git revision and compile time features.

Traversal Options

-s --size=range (default: all) Only consider files in a certain size range. The format of range is
min-max, where both ends can be specified as a number with an optional multiplier. The available
multipliers are:

• C (1^1), W (2^1), B (512^1), K (1000^1), KB (1024^1), M (1000^2), MB (1024^2), G
(1000^3), GB (1024^3),

• T (1000^4), TB (1024^4), P (1000^5), PB (1024^5), E (1000^6), EB (1024^6)

42 Chapter 6. Informative reference

http://rmlint.readthedocs.org/en/latest/gui.html
http://rmlint.readthedocs.org/en/latest/gui.html

rmlint documentation, Release

The size format is about the same as dd(1) uses. Example: "100KB-2M".

It’s also possible to specify only one size. In this case the size is interpreted as "bigger than this
size". If you want to to filter for files up to this size you can add a - in front (-s -1M).

-d --max-depth=depth (default: INF) Only recurse up to this depth. A depth of 1 would disable
recursion and is equivalent to a directory listing.

-l --hardlinked (default) / -L --no-hardlinked Whether to report hardlinked files as dupli-
cates.

-f --followlinks / -F --no-followlinks / -@ --see-symlinks (default) -f will al-
ways follow symbolic links. If file system loops occur rmlint will detect this. If -F is specified,
symbolic links will be ignored completely, if -@ is specified, rmlint will see symlinks and treats
them like small files with the path to their target in them. The latter is the default behaviour, since it
is a sensible default for --merge-directories.

-x --no-crossdev / -X --crossdev (default) Stay always on the same device (-x), or allow
crossing mountpoints (-X)?

-r --hidden / -R --no-hidden (default) / --partial-hidden Also traverse hidden direc-
tories? This is often not a good idea, since directories like .git/ would be investigated. With
--partial-hidden hidden files and folders are only considered if

they’re inside duplicate directories (see –merge-directories).

-b --match-basename Only consider those files as dupes that have the same basename. See also
man 1 basename. The comparison of the basenames is case-insensitive.

-B --unmatched-basename Only consider those files as dupes that do not share the same base-
name. See also man 1 basename. The comparison of the basenames is case-insensitive.

-e --match-with-extension / -E --no-match-with-extension (default) Only con-
sider those files as dupes that have the same file extension. For example two photos would only
match if they are a .png. The extension is compared case insensitive, so .PNG is the same as
.png.

-i --match-without-extension / -I --no-match-without-extension (default)
Only consider those files as dupes that have the same basename minus the file extension. For
example: banana.png and banana.jpeg would be considered, while apple.png and
peach.png won’t. The comparison is also case-insensitive.

-n --newer-than-stamp=<timestamp_filename> / -N --newer-than=<iso8601_timestamp_or_unix_timestamp>
Only consider files (and their size siblings for duplicates) newer than a certain modification time
(mtime). The age barrier may be given as seconds since the epoch or as ISO8601-Timestamp like
2014-09-08T00:12:32+0200.

-n expects a file from which it can read the timestamp. After rmlint run, the file will be updated
with the current timestamp. If the file does not initially exist, no filtering is done but the stampfile is
still written.

-N in contrast takes the timestamp directly and will not write anything.

Note that rmlint will find duplicates newer than timestamp, even if the original is older.
If you want only find duplicates where both original and duplicate are newer

than timestamp you can use find(1):

• find -mtime -1 | rmlint - # find all files younger than a day

Note: you can make rmlint write out a compatible timestamp with:

6.4. rmlint 43

rmlint documentation, Release

• -O stamp:stdout # Write a seconds-since-epoch timestamp to
stdout on finish.

• -O stamp:stdout -c stamp:iso8601 # Same, but write as ISO8601.

Original Detection Options

-k --keep-all-tagged / -K --keep-all-untagged Don’t delete any duplicates that are in
tagged paths (-k) or that are in non-tagged paths (-K). (Tagged paths are those that were named
after //).

-m --must-match-tagged / -M --must-match-untagged Only look for duplicates of
which at least one is in one of the tagged paths. (Paths that were named after //).

-S --rank-by=criteria (default: pm) Sort the files in a group of duplicates by one or more cri-
teria.

• m: keep lowest mtime (oldest) M: keep highest mtime (newest)

• a: keep first alphabetically A: keep last alphabetically

• p: keep first named path P: keep last named path

• d: keep path with lowest depth D: keep path with highest depth

• l: keep path with shortest basename L: keep path with longest basename

• r: keep paths matching regex R: keep path not matching regex

• r: keep paths matching regex R: keep path not matching regex

• x: keep basenames matching regex X: keep basenames not matching regex

Alphabetical sort will only use the basename of the file and ignore it’s case. One can have multiple
criteria, e.g.: -S am will choose first alphabetically; if tied then by mtime. Note: original path
criteria (specified using //) will always take first priority over -S options.

For more fine grained control, it is possible to give a regular expression to sort by. This can be useful
when you know a common fact that identifies original paths (like a path component being src).

To use the regular expression you simply enclose it in the criteria string by adding <REGU-
LAR_EXPRESSIOn> after specifying r or x. Example: -S 'r<.*\.bak$>' makes all files that
have a .bak suffix original files.

Warning: When using r or x, try to make your regex to be as specific as possible! Good practice
includes adding a $ anchor at the end of the regex.

Tip: l is useful for files like file.mp3 vs file.1.mp3 or file.mp3.bak.

Caching

--replay [path.json] Read an existing json file and re-output it. This is very useful if you want
to reformat, refilter or resort the output you got from an previous run. Usage is simple: Just pass
--replay on the second run, with other changed to the new formatters or filters. You can also
merge several previous runs by using --replay more than once, in this case it will merge all files
given and output them as one big run.

If you want to view only the duplicates of certain subdirectories, just pass them on the commandline
as usual.

If path.json is not given then ./rmlint.json is used as default.

44 Chapter 6. Informative reference

rmlint documentation, Release

By design, some options will not have any effect. Those are:

• –followlinks

• –algorithm

• –paranoid

• –clamp-low

• –hardlinked

• –write-unfinished

• ... and all other caching options below.

--xattr-read / --xattr-write / --xattr-clear Read or write cached checksums from the
extended file attributes. This feature can be used to speed up consecutive runs.

CAUTION: This is a potentially unsafe feature. The cache file might be changed accidentally,
potentially causing rmlint to report false positives. As a security feature the mtime of each cached
file is checked against the mtime of the time the checksum was created.

NOTE: The speedup you may experience may vary wildly. In some cases the parsing of the json file
might take longer than the actual hashing. Also, the cached json file will not be of use when doing
many modifications between the runs, i.e. causing an update of mtime on most files. This feature is
mostly intended for large datasets in order to prevent the re-hashing of large files.

NOTE: Many tools do not support extended file attributes properly, resulting in a loss of the infor-
mation when copying the file or editing it. Also, this is a linux specific feature that works not on all
filesystems and only if you have write permissions to the file.

Usage example:

$ rmlint large_file_cluster/ -U --xattr-write # first run.
$ rmlint large_file_cluster/ --xattr-read # second run.

-U --write-unfinished Include files in output that have not been hashed fully (i.e. files that do
not appear to have a duplicate). This is mainly useful in conjunction with --xattr-write/
read. When re-running rmlint on a large dataset this can greatly speed up a re-run in some cases.

Rarely used, miscellaneous options

-t --threads=N (default: 16) The number of threads to use during file tree traversal and hashing.
rmlint probably knows better than you how to set the value.

-u --max-paranoid-mem=size Apply a maximum number of bytes to use for –paranoid. The
size-description has the same format as for –size.

-q --clamp-low=[fac.tor|percent%|offset] (default: 0) / -Q --clamp-top=[fac.tor|percent%|offset] (default: 1.0)
The argument can be either passed as factor (a number with a . in it), a percent value (suffixed by
%) or as absolute number or size spec, like in --size.

Only look at the content of files in the range of from low to (including) high. This means, if the
range is less than -q 0% to -Q 100%, than only partial duplicates are searched. If the file size is
less than the clamp limits, the file is ignored during traversing. Be careful when using this function,
you can easily get dangerous results for small files.

This is useful in a few cases where a file consists of a constant sized header or footer. With this option
you can just compare the data in between. Also it might be useful for approximate comparison where
it suffices when the file is the same in the middle part.

6.4. rmlint 45

rmlint documentation, Release

--with-fiemap (default) / --without-fiemap Enable or disable reading the file extents on ro-
tational disk in order to optimize disk access patterns.

FORMATTERS

• csv: Output all found lint as comma-separated-value list.

Available options:

– no_header: Do not write a first line describing the column headers.

• sh: Output all found lint as shell script This formatter is activated as default.

Available options:

– cmd: Specify a user defined command to run on duplicates. The command can be any valid /bin/sh-
expression. The duplicate path and original path can be accessed via "$1" and "$2". The command will
be written to the user_command function in the sh-file produced by rmlint.

– handler Define a comma separated list of handlers to try on duplicate files in that given order until one
handler succeeds. Handlers are just the name of a way of getting rid of the file and can be any of the
following:

* clone: btrfs only. Try to clone both files with the BTRFS_IOC_FILE_EXTENT_SAME
ioctl(3p). This will physically delete duplicate extents. Needs at least kernel 4.2.

* reflink: Try to reflink the duplicate file to the original. See also --reflink in man 1 cp.
Fails if the filesystem does not support it.

* hardlink: Replace the duplicate file with a hardlink to the original file. Fails if both files are not
on the same partition.

* symlink: Tries to replace the duplicate file with a symbolic link to the original. Never fails.

* remove: Remove the file using rm -rf. (-r for duplicate dirs). Never fails.

* usercmd: Use the provided user defined command (-c sh:cmd=something). Never fails.

Default is remove.

– link: Shortcut for -c sh:clone,reflink,hardlink,symlink.

– hardlink: Shortcut for -c sh:hardlink,symlink.

– symlink: Shortcut for -c sh:symlink.

• json: Print a JSON-formatted dump of all found reports. Outputs all finds as a json document. The document
is a list of dictionaries, where the first and last element is the header and the footer respectively, everything
between are data-dictionaries.

Available options:

– no_header=[true|false]: Print the header with metadata.

– no_footer=[true|false]: Print the footer with statistics.

– oneline=[true|false]: Print one json document per line.

• py: Outputs a python script and a JSON document, just like the json formatter. The JSON document is written
to .rmlint.json, executing the script will make it read from there. This formatter is mostly intented for
complex use-cases where the lint needs special handling. Therefore the python script can be modified to do
things standard rmlint is not able to do easily.

46 Chapter 6. Informative reference

rmlint documentation, Release

• stamp:

Outputs a timestamp of the time rmlint was run.

Available options:

– iso8601=[true|false]: Write an ISO8601 formatted timestamps or seconds since epoch?

• progressbar: Shows a progressbar. This is meant for use with stdout or stderr [default].

See also: -g (--progress) for a convenience shortcut option.

Available options:

– update_interval=number: Number of milliseconds to wait between updates. Higher values use less re-
sources (default 50).

– ascii: Do not attempt to use unicode characters, which might not be supported by some terminals.

– fancy: Use a more fancy style for the progressbar.

• pretty: Shows all found items in realtime nicely colored. This formatter is activated as default.

• summary: Shows counts of files and their respective size after the run. Also list all written output files.

• fdupes: Prints an output similar to the popular duplicate finder fdupes(1). At first a progressbar is printed on
stderr. Afterwards the found files are printed on stdout; each set of duplicates gets printed as a block separated
by newlines. Originals are highlighted in green. At the bottom a summary is printed on stderr. This is mostly
useful for scripts that were set up for parsing fdupes output. We recommend the json formatter for every other
scripting purpose.

Available options:

– omitfirst: Same as the -f / --omitfirst option in fdupes(1). Omits the first line of each set of
duplicates (i.e. the original file.

– sameline: Same as the -1 / --sameline option in fdupes(1). Does not print newlines between
files, only a space. Newlines are printed only between sets of duplicates.

EXAMPLES

This is a collection of common usecases and other tricks:

• Check the current working directory for duplicates.

$ rmlint

• Show a progressbar:

$ rmlint -g

• Quick re-run on large datasets using different ranking criteria on second run:

$ rmlint large_dir/ # First run; writes rmlint.json

$ rmlint --replay rmlint.json large_dir -S MaD

• Search only for duplicates and duplicate directories

$ rmlint -T "df,dd" .

• Compare files byte-by-byte in current directory:

$ rmlint -pp .

6.4. rmlint 47

rmlint documentation, Release

• Find duplicates with same basename (excluding extension):

$ rmlint -e

• Do more complex traversal using find(1).

$ find /usr/lib -iname '*.so' -type f | rmlint - # find all duplicate .so
files

$ find ~/pics -iname '*.png' | ./rmlint - # compare png files only

• Limit file size range to investigate:

$ rmlint -s 2GB # Find everything >= 2GB

$ rmlint -s 0-2GB # Find everything < 2GB

• Only find writable and executable files:

$ rmlint --perms wx

• Reflink on btrfs, else try to hardlink duplicates to original. If that does not work, replace duplicate with a
symbolic link:

$ rmlint -c sh:link

• Inject user-defined command into shell script output:

$./rmlint -o sh -c sh:cmd='echo "original:" "$2" "is the same as" "$1"'

• Use data as master directory. Find only duplicates in backup that are also in data. Do not delete any files in
data:

$ rmlint backup // data --keep-all-tagged --must-match-tagged

PROBLEMS

1. False Positives: Depending on the options you use, there is a very slight risk of false positives (files that are
erroneously detected as duplicate). The default hash function (SHA1) is pretty safe but in theory it is possible
for two files to have then same hash. This happens about once in 2 ** 80 files, so it is very very unlikely. If
you’re concerned just use the --paranoid (-pp) option. This will compare all the files byte-by-byte and is
not much slower than SHA1.

2. File modification during or after rmlint run: It is possible that a file that rmlint recognized as duplicate
is modified afterwards, resulting in a different file. If you use the rmlint-generated shell script to delete the
duplicates, you can run it with the -p option to do a full re-check of the duplicate against the original before it
deletes the file.

SEE ALSO

• find(1)

• rm(1)

• cp(1)

Extended documentation and an in-depth tutorial can be found at:

• http://rmlint.rtfd.org

48 Chapter 6. Informative reference

http://rmlint.rtfd.org

rmlint documentation, Release

BUGS

If you found a bug, have a feature requests or want to say something nice, please visit https://github.com/sahib/rmlint/
issues.

Please make sure to describe your problem in detail. Always include the version of rmlint (--version). If you
experienced a crash, please include at least one of the following information with a debug build of rmlint:

• gdb --ex run -ex bt --args rmlint -vvv [your_options]

• valgrind --leak-check=no rmlint -vvv [your_options]

You can build a debug build of rmlint like this:

• git clone git@github.com:sahib/rmlint.git

• cd rmlint

• scons DEBUG=1

• sudo scons install # Optional

LICENSE

rmlint is licensed under the terms of the GPLv3.

See the COPYRIGHT file that came with the source for more information.

PROGRAM AUTHORS

rmlint was written by:

• Christopher <sahib> Pahl 2010-2015 (https://github.com/sahib)

• Daniel <SeeSpotRun> T. 2014-2015 (https://github.com/SeeSpotRun)

Also see the http://rmlint.rtfd.org for other people that helped us.

If you consider a donation you can use Flattr or buy us a beer if we meet:

https://flattr.com/thing/302682/libglyr

The Changelog is also updated with new and futures features, fixes and overall changes.

6.4. rmlint 49

https://github.com/sahib/rmlint/issues
https://github.com/sahib/rmlint/issues
https://github.com/sahib
https://github.com/SeeSpotRun
http://rmlint.rtfd.org
https://flattr.com/thing/302682/libglyr
https://github.com/sahib/rmlint/blob/develop/CHANGELOG.md

rmlint documentation, Release

50 Chapter 6. Informative reference

CHAPTER 7

Authors

rmlint was and is written by:

Christopher Pahl https://github.com/sahib 2010-2015
Daniel Thomas https://github.com/SeeSpotRun 2014-2015

Additional thanks to:

• qitta (Ideas & Testing)
• vvs- (Scalability testing)
• My cats.
• Attila Toth
• All sane bugreporters (there are not many)
• All packagers, porters and patchers.

51

https://github.com/sahib
https://github.com/SeeSpotRun
https://github.com/qitta
https://github.com/vvs-?tab=activity
http://imgur.com/gallery/rims0yl

rmlint documentation, Release

52 Chapter 7. Authors

CHAPTER 8

License

rmlint is licensed under the terms of GPLv3.

53

http://www.gnu.org/copyleft/gpl.htm

rmlint documentation, Release

54 Chapter 8. License

CHAPTER 9

Donations

If you think rmlint saved*0 you some serious time and/or space, you might consider a donation. You can donate either
via Flattr or via PayPal:

Or just buy us a beer if we ever meet. Nice emails are okay too.

0 If it freed you from your beloved data: Sorry.†0

55

http://flattr.com/thing/302682/libglyr

	Installation
	Dependencies
	Compilation

	Gentle Guide to rmlint
	Beginner Examples
	Filtering input files
	Outputs & Formatters
	Paranoia mode
	Original detection / selection
	Finding duplicate directories
	Replaying results
	Miscellaneous options

	Graphical user interface
	Installation
	Usage
	Developers

	Cautions (or why it's hard to write a dupefinder)
	Good Practice when Deleting Duplicates
	Attributes of a Robust Duplicate Finder

	Frequently Asked Questions
	rmlint finds more/less dupes than tool X!
	Can you implement feature X?
	I forgot to add some options before running on a large dataset. Do I need to re-run it?
	I have a very large number of files and I run out of memory and patience.

	Informative reference
	Developer's Guide
	Translating rmlint
	Benchmarks
	rmlint

	Authors
	License
	Donations

