

rmlint finds space waste and other broken things on your filesystem and offers
to remove it. It is able to find:

	
	Duplicate files & directories.

	Nonstripped Binaries

	Broken symlinks.

	
	Empty files.

	Recursive empty directories.

	Files with broken user or group id.

 Installation

Installation

Many major Linux distribution might already package rmlint – but watch out for
the version. If possible, we recommend using the newest version [https://github.com/sahib/rmlint/releases] available.

If there is no package yet or you want to try a development version, you gonna
need to compile rmlint from source.

Dependencies

Hard dependencies:

	glib \(\geq 2.32\) (general C Utility Library)

Soft dependencies:

	libblkid (detecting mountpoints)

	libelf (nonstripped binary detection)

	libjson-glib (parsing rmlint’s own json as caching layer)

Build dependencies:

	git (version control)

	scons (build system)

	sphinx (manpage/documentation generation)

	gettext (support for localization)

Here’s a list of readily prepared commands for known operating systems:

	Fedora \(\geq 21\):

$ yum -y install pkgconf git scons python3-sphinx gettext json-glib-devel
$ yum -y install glib2-devel libblkid-devel elfutils-libelf-devel
Optional dependencies for the GUI:
$ yum -y install pygobject3 gtk3 librsvg2

There are also pre-built packages on Fedora Copr [https://copr.fedorainfracloud.org/coprs/eclipseo/rmlint/]:

$ dnf copr enable eclipseo/rmlint
$ dnf install rmlint

Since Fedora 29 we also have an official package [https://bugzilla.redhat.com/show_bug.cgi?id=1655338].

	ArchLinux:

There is an official package in [community] here [https://www.archlinux.org/packages/?name=rmlint]:

$ pacman -S rmlint

Alternatively you can use rmlint-git in the AUR:

$ pacman -S pkgconf git scons python-sphinx
$ pacman -S glib2 libutil-linux elfutils json-glib
Optional dependencies for the GUI:
$ pacman -S gtk3 python-gobject librsvg

There is also a PKGBUILD [https://aur.archlinux.org/packages/rm/rmlint-git/PKGBUILD] on the ArchLinux AUR [https://aur.archlinux.org/packages/rmlint-git]:

$ # Use your favourite AUR Helper.
$ yaourt -S rmlint-git

It is built from git master, not from the develop branch.

	Debian / Ubuntu \(\geq 12.04\):

Note: Debian also ships an official package [https://packages.debian.org/de/sid/rmlint].
Use the below instructions if you need a more recent version.

This most likely applies to most distributions that are derived from Ubuntu.
Note that the GUI depends on GTK+ >= 3.12!
Ubuntu 14.04 LTS and earlier still ships [https://github.com/sahib/rmlint/issues/171#issuecomment-199070974] with 3.10.

$ apt-get install pkg-config git scons python3-sphinx python3-nose gettext build-essential
Optional dependencies for more features:
$ apt-get install libelf-dev libglib2.0-dev libblkid-dev libjson-glib-1.0 libjson-glib-dev
Optional dependencies for the GUI:
$ apt-get install python3-gi gir1.2-rsvg gir1.2-gtk-3.0 python-cairo gir1.2-polkit-1.0 gir1.2-gtksource-3.0

	macOS

rmlint can be installed via homebrew [http://brew.sh]:

Prerequisite: If homebrew has not already been installed on the system, execute:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)".

With homebrew installed, execute:

$ brew install rmlint

See also this issue [https://github.com/sahib/rmlint/issues/175#issuecomment-253186769] for more information on the homebrew formula.

	FreeBSD \(\geq 10.1\):

$ pkg install git scons py27-sphinx pkgconf
$ pkg install glib gettext libelf json-glib

Send us a note if you want to see your distribution here or the instructions
need an update. The commands above install the full dependencies, therefore
some packages might be stripped if you do not need the feature
they enable. Only hard requirement for the commandline is glib.

Also be aware that the GUI needs at least \(gtk \geq 3.12\) to work!

Compilation

Compilation consists of getting the source and translating it into a usable
binary. We use the build system scons. Note that the following instructions
build the software from the potentially unstable develop branch:

$ # Omit -b develop if you want to build from the stable master
$ git clone -b develop https://github.com/sahib/rmlint.git
$ cd rmlint/
$ scons config # Look what features scons would compile
$ scons DEBUG=1 # Optional, build locally.
Install (and build if necessary). For releases you can omit DEBUG=1
$ sudo scons DEBUG=1 --prefix=/usr install

Done!

You should be now able to see the manpage with rmlint --help or man 1
rmlint.

Uninstall with sudo scons uninstall and clean with scons -c.

You can also only type the install command above. The buildsystem is clever
enough to figure out which targets need to be built beforehand.

Troubleshooting

On some distributions (especially Debian derived) rmlint --gui might fail
with /usr/bin/python3: No module named shredder (or similar). This is due
some incompatible changes on Debian’s side.

See this thread [https://github.com/sahib/rmlint/issues/171#issuecomment-199070974] for a workaround using PYTHONPATH.

 Gentle Guide to rmlint

Gentle Guide to rmlint

Welcome to the Tutorial of rmlint.

[image: _images/shredder.svg]

We use a few terms that might not be obvious to you at first,
so we gonna explain them to you here.

	Original

	In a group of duplicate files, one file is said to
be the original file. It might not, strictly speaking,
be the original from which the copies where created,
but is a convenient terminology for selecting which
files to keep and which to delete.

	Duplicate

	A file that matches the original. Note that depending
on rmlint settings, “match” may mean an exact match or
just that the files have matching hash values.

Beginner Examples

Let’s just dive in into some examples:

$ rmlint

This simply scans your current working directory for lint and reports them in
your terminal. Note that nothing will be removed (even if it prints rm).

Despite its name, rmlint just finds suspicious files, but never modifies the
filesystem itself *. Instead it gives you detailed reports in different
formats to get rid of them yourself. These reports are called outputs. By
default a shellscript will be written to rmlint.sh that contains readily
prepared shell commands to remove duplicates and other finds,

	*

	You could say it should be named findlint.

So for the above example the full process, if you want to actually delete the
lint that was found, would be:

$ rmlint some/path
(wait for rmlint to finish running)
$ gedit rmlint.sh
(or any editor you prefer... review the content of rmlint.sh to
check what it plans to delete; make any edits as necessary)
$./rmlint.sh
(the rmlint.sh script will ask for confirmation, then delete the
appropriate lint, then delete itself)

On larger runs, it might be more preferable to show a progressbar instead of a
long list of files. You can do this easily with the -g switch:

$ rmlint -g

It will look like this:

[image: _images/screenshot.png]

Filtering input files

What if we do not want to check all files as dupes? rmlint has a
good repertoire of options to select only certain files. We won’t cover
all options, but will get you started with a few useful ones. Note if
you want a more do-it-yourself approach to file filtering, you
can also use external tools to feed rmlint's stdin:

$ find pics/ -iname '*.png' | rmlint -
$ find pics/ -iname '*.png' -print0 | rmlint -0 # (also handles filenames with newline characters)

Limit files by size using --size

only check files between 20 MB and 1 Gigabyte:
$ rmlint --size 20M-1G
short form (-s) works just as well:
$ rmlint -s 20M-1G
only check files bigger than 4 kB:
$ rmlint -s 4K
only check files smaller than 1234 bytes:
$ rmlint -s 0-1234
Find empty files and handle them as duplicates:
$ rmlint -T df --size 0-1

Valid units include:

K,M,G,T,P for powers of 1000

KB, MB, GB etc for powers of 1024

If no units are given, rmlint will assume bytes.

Limit duplicate matching according to basename

By default, rmlint compares file contents, regardless of file name.
So if afile.jpg has the same content as bfile.txt (which is unlikely!),
then rmlint will find and report this as a duplicate.
You can speed things up a little bit by telling rmlint not to try to
match files unless they have the same or similar file names. The three
options here are:

-b (--match-basename)

-e (--match-extension)

-i (--match-without-extension) .

Examples:

Find all duplicate files with the same basename:
$ rmlint -b some_dir/
ls some_dir/one/hello.c
rm some_dir/two/hello.c
Find all duplicate files that have the same extension:
$ rmlint -e some_dir/
ls some_dir/hello.c
rm some_dir/hello_copy.c
Find all duplicate files that have the same basename:
minus the extension
$ rmlint -i some_dir/
ls some_dir/hello.c
rm some_dir/hello.bak

Limit files by their modification time

This is a useful feature if you want to investigate only files newer than
a certain date or if you want to progressively update the results, i.e. when you
run rmlint in a script that watches a directory for duplicates.

The manual way is using -N (--newer-than=<timestamp>):

Use a Unix-UTC Timestamp (seconds since epoch)
$ rmlint -N 1414755960

Find all files newer than file.png
$ rmlint -N $(stat --print %Y file.png)

Alternatively use an ISO8601 formatted Timestamp
$ rmlint -N 2014-09-08T00:12:32+0200

If you are periodically checking the same directory tree for duplicates,
you can get a substantial speedup by creating an automatic timestamp file
each time you run rmlint. To do this, use command line options:
-n (--newer-than-stamp) and
-O stamp:stamp.file (we’ll come to outputs in a minute):
Here’s an example for incrementally scanning your home folder:

First run of rmlint:
$ rmlint /home/foobar -O stamp:/home/foobar/.rmlint.stamp
ls /home/foobar/a.file
rm /home/foobar/b.file

Second run, no changes:
$ rmlint /home/foobar -n /home/foobar/.rmlint.stamp
<nothing>

Second run, new file copied:
$ cp /home/foobar/a.file /home/foobar/c.file
$ rmlint /home/foobar -n /home/foobar/.rmlint.stamp
ls /home/foobar/a.file
rm /home/foobar/b.file
rm /home/foobar/c.file

Note that -n updates the timestamp file each time it is run.

Outputs & Formatters

rmlint is capable of creating reports in several output formats, to
either your screen or to a file. If you run it with the default options you
already see two of those output formatters on your screen, namely pretty
and summary.

Extra output formats can be added via either the -O (--add-output)
or -o (--output) switch. The only difference is the -o clears
all the default outputs while -O just adds to the defaults.

Note

If you just came here to learn how to print a nice progressbar:
Just use the -g (--progress) option:

$ rmlint -g /usr

Here’s an example:

$ rmlint -o json:stderr

Here you would get this output printed on stderr:

[{
 "description": "rmlint json-dump of lint files",
 "cwd": "/home/user/",
 "args": "rmlint -o json:stderr"
},
{
 "type": "duplicate_file",
 "path": "/home/user/test/b/one",
 "size": 2,
 "inode": 2492950,
 "disk_id": 64771,
 "progress": 100,
 "is_original": true,
 "mtime": 1414587002
},
... snip ...
{
 "aborted": false,
 "total_files": 145,
 "ignored_files": 9,
 "ignored_folders": 4,
 "duplicates": 11,
 "duplicate_sets": 2,
 "total_lint_size": 38
}]

You probably noticed the colon in the commandline above. Everything before it is
the name of the output-format, everything behind is the path where the output
should land. Instead of a path you can also use stdout and stderr, as
we did above or just omit the colon which will print everything to stdout.

Some formatters can be customised using the -c (--config) command.
Here’s the list of currently available formatters and their config options:

	json

	Outputs all finds as a json document. The document is a list of dictionaries,
where the first and last element is the header and the footer respectively,
everything between are data-dictionaries. This format was chosen to allow
application to parse the output in realtime while rmlint is still running.

The header contains information about the program invocation, while the footer
contains statistics about the program-run. Every data element has a type which
identifies its lint type (you can lookup all types here_).

Config values:

	use_header=[true|false]: Print the header with metadata.

	use_footer=[true|false]: Print the footer with statistics.

	oneline=[true|false]: Print one json document per line.

	sh

	Outputs a shell script defines a command function for each lint type, which
it then calls for each file of each type. The script can be executed (it is
already chmod +x’d by rmlint).
By default it will ask you if you really want to proceed. If you
do not want that confirmation prompt you can pass the -d. Additionally
it will delete itself after running, unless you pass the -x switch to
the sh script.

It is enabled by default and writes to rmlint.sh.

Example output:

$ rmlint -o sh:stdout
#!/bin/sh
This file was autowritten by rmlint
rmlint was executed from: /home/user/
You command line was: ./rmlint -o sh:rmlint.sh

... snip ...

echo '/home/user/test/b/one' # original
remove_cmd '/home/user/test/b/file' # duplicate
remove_cmd '/home/user/test/a/two' # duplicate
remove_cmd '/home/user/test/a/file' # duplicate

if [-z $DO_REMOVE]
then
 rm -f 'rmlint.sh';
fi

Config values:

	clone: reflink-capable filesystems only. Try to clone both files with the
FIDEDUPERANGE ioctl(3p) (or BTRFS_IOC_FILE_EXTENT_SAME on older kernels).
This will free up duplicate extents. Needs at least kernel 4.2.

	reflink: Try to reflink the duplicate file to the original. See also
--reflink in man 1 cp. Fails if the filesystem does not support
it.

	hardlink: Replace the duplicate file with a hardlink to the original
file. Fails if both files are not on the same partition.

	symlink: Tries to replace the duplicate file with a symbolic link to
the original. Never fails.

	remove: Remove the file using rm -rf. (-r for duplicate dirs).
Never fails.

	usercmd: Use the provided user defined command (-c
sh:cmd='*user command*'). Use “$1” within ‘user command’ to refer to
the duplicate file and (optionally) “$2” to refer to the original.

Example (predefined config):

$ rmlint -o sh:stdout -o sh:rmlint.sh -c sh:symlink
...
echo '/home/user/test/b/one' # original
cp_symlink '/home/user/test/b/file' '/home/user/test/b/one' # duplicate
$./rmlint.sh -d
Keeping: /home/user/test/b/one
Symlinking to original: /home/user/test/b/file

Example (custom command):

The following example uses the trash-put command from the
trash-cli [https://github.com/andreafrancia/trash-cli] utility to move duplicate files to trash:

$ rmlint -o sh -c sh:cmd='echo "Trashing $1" && trash-put "$1"'

	py

	Outputs a python script and a JSON file. The json file is the same as that produced
by the json formatter. The JSON file is written to .rmlint.json, executing the
python script will find it there. The default python script produced by rmlint does
pretty much the same thing as the shell script described above (although not reflinking
or hardlinking or symlinking at the moment). You can customise the python script for
just about any use case (Python is a simple and extremely powerful programming language).

Example:

$ rmlint -o py:remover.py
$./remover.py --dry-run # Needs Python3
Deleting twins of /home/user/sub2/a
Handling (duplicate_file): /home/user/sub1/a
Handling (duplicate_file): /home/user/a

Deleting twins of /home/user/sub2/b
Handling (duplicate_file): /home/user/sub1/b

	csv

	Outputs a csv formatted dump of all lint files. Handy for all the
spreadsheet-jockeys out there!
It looks like this:

$ rmlint -o csv -D
type,path,size,checksum
emptydir,"/home/user/tree2/b",0,00000000000000000000000000000000
duplicate_dir,"/home/user/test/b",4,f8772f6fda08bbc826543334663d6f13
duplicate_dir,"/home/user/test/a",4,f8772f6fda08bbc826543334663d6f13
duplicate_dir,"/home/user/tree/b",8,62202a79add28a72209b41b6c8f43400
duplicate_dir,"/home/user/tree/a",8,62202a79add28a72209b41b6c8f43400
duplicate_dir,"/home/user/tree2/a",4,311095bc5669453990cd205b647a1a00

Config values:

	use_header=[true|false]: Print the column name headers.

	stamp

	Outputs a timestamp of the time rmlint was run.

Config values:

	iso8601=[true|false]: Write an ISO8601 formatted timestamps or seconds
since epoch?

	pretty

	Pretty-prints the found files in a colorful output (intended to be printed on
stdout or stderr). This is enabled by default.

	summary

	Sums up the run in a few lines with some statistics. This enabled by default
too.

	progressbar

	Prints a progressbar during the run of rmlint. This is recommended for
large runs where the pretty formatter would print thousands of lines.
Not recommended in combination with pretty

Config values:

	update_interval=number: Number of milliseconds to wait between updates.
Higher values use less resources.

	fdupes

	A formatter that behaves similar to fdupes(1) - another duplicate
finder. This is mostly indented for compatibility (e.g. scripts that relied
on that format). Duplicate set of files are printed as block, each separated
by a newline. Original files are highlighted in green (this is an addition).
During scanning a progressbar and summary are printed, followed by the fdupes
output. The first two are printed to stderr, while the parseable lines
will be printed to stdout.

Consider using the far more powerful json output for scripting purposes,
unless you already have a script that expects fdupes output.

Paranoia mode

Let’s face it, why should you trust rmlint?

Technically it only computes a hash of your file which might, by its nature,
collide with the hash of a totally different file. If we assume a perfect hash
function (i.e. one that distributes its hash values perfectly even over all
possible values), the probability of having a hash-collision is
\(\frac{1}{2^{512}}\) for the default blake2b 512-bit hash. Of course hash
functions are not totally random, so the collision probability is slightly higher.
Due to the “birthday paradox”, collision starts to become a real risk if you have
more than about \(2^{256}\) files of the same size.

If you’re wary, you might want to make a bit more paranoid than the default. By
default the blake2b (previously sha1 was the default) hash algorithm is
used, which we consider a good trade-off of speed and accuracy. rmlint’s
paranoia level can be adjusted using the -p (--paranoid) switch.

Here’s what they do in detail:

	-p is equivalent to --algorithm=paranoid

	-P is equivalent to --algorithm=highway256

	-PP is equivalent to --algorithm=metro256

	-PPP is equivalent to --algorithm=metro

As you see, it just enables a certain duplicate detection algorithm to either use
a stronger hash function or to do a byte-by-byte comparison. While this might sound
slow it’s often only a few seconds slower than the default behaviour.

There is a bunch of other hash functions you can lookup in the manpage.
We recommend never to use anything worse than the default.

Note

Even with the default options, the probability of a false positive doesn’t
really start to get significant until you have around 1,000,000,000,000,000,000,000,000
different files all of the same file size. Bugs in rmlint are sadly (or happily?)
more likely than hash collisions.
See http://preshing.com/20110504/hash-collision-probabilities/ for discussion.

Original detection / selection

As mentioned before, rmlint divides a group of dupes in one original and
one or more duplicates of that one. While the chosen original might not be the one
that was there first, you generally want to select one file to keep from each
duplicate set.

By default, if you specify multiple paths in the rmlint command, the files in the
first-named paths are treated as more “original” than the later named paths. If
there are two files in the same path, then the older one will be treated as the
original. If they have the same modification time then it’s just a matter of chance
which one is selected as the original.

The way rmlint chooses the original can be customised by the -S
(--rank-by) option.

Here’s an example:

Normal run:
$ rmlint
ls c
rm a
rm b

Use alphabetically first one as original
$ rmlint -S a
ls a
rm b
rm c

Alphabetically first makes sense in the case of
backup files, ie a.txt.bak comes after a.txt.

Here’s a table of letters you can supply to the -S option:

	m

	keep lowest mtime (oldest)

	M

	keep highest mtime (newest)

	a

	keep first alphabetically

	A

	keep last alphabetically

	p

	keep first named path

	P

	keep last named path

	d

	keep path with lowest depth

	D

	keep path with highest depth

	l

	keep path with shortest basename

	L

	keep path with longest basename

	r

	keep paths matching regex

	R

	keep path not matching regex

	x

	keep basenames matching regex

	X

	keep basenames not matching regex

	h

	keep file with lowest hardlink count

	H

	keep file with highest hardlink count

	o

	keep file with lowest number of hardlinks outside of the paths traversed by rmlint.

	O

	keep file with highest number of hardlinks outside of the paths traversed by rmlint.

The default setting is -S pOma. Multiple sort criteria can be specified,
eg -S mpa will sort first by mtime, then (if tied), based on which path you
specified first in the rmlint command, then finally based on alphabetical order
of file name. Note that “original directory” criteria (see below) take
precedence over any -S options.

Alphabetical sort will only use the basename of the file and ignore its case.
One can have multiple criteria, e.g.: -S am will choose first alphabetically; if tied then by mtime.
Note: original path criteria (specified using //) will always take first priority over -S options.

For more fine grained control, it is possible to give a regular expression
to sort by. This can be useful when you know a common fact that identifies
original paths (like a path component being src or a certain file ending).

To use the regular expression you simply enclose it in the criteria string
by adding <REGULAR_EXPRESSION> after specifying r or x. Example: -S
'r<.*\.bak$>' makes all files that have a .bak suffix original files.

Warning: When using r or x, try to make your regex to be as specific
as possible! Good practice includes adding a $ anchor at the end of the regex.

Tips:

	l is useful for files like file.mp3 vs file.1.mp3 or file.mp3.bak.

	a can be used as last criteria to assert a defined order.

	o/O and h/H are only useful if there any hardlinks in the traversed path.

	o/O takes the number of hardlinks outside the traversed paths (and
thereby minimizes/maximizes the overall number of hardlinks). h/H in
contrast only takes the number of hardlinks inside of the traversed
paths. When hardlinking files, one would like to link to the original
file with the highest outer link count (O) in order to maximise the
space cleanup. H does not maximise the space cleanup, it just selects
the file with the highest total hardlink count. You usually want to specify O.

	pOma is the default since p ensures that first given paths rank as
originals,
O ensures that hardlinks are handled well, m ensures that the oldest
file is the original and a simply ensures a defined ordering if no other
criteria applies.

	If you something very specific about the paths you’re searching, then the
r/R or x/X options are your friend. You can also specify those
options multiple times. Have an example here:

Sort paths with ABC in them first, then DEF, then GHI.
Everthing with »temp«, »tmp« or »cache« in it comes last,
the rest is sandwhiched in between and sorted by their modification time (m).
If something is tied, the modification time is also used a sorting criteria.
$ rmlint -S 'r<.*ABC.*>r<.*DEF.*>r<.*GHI.*>R<.*(tmp|temp|cache).*>m' /tmp/t

Duplicate(s):
 ls '/tmp/t/ABC'
 rm '/tmp/t/DEF'
 rm '/tmp/t/GHI'
 rm '/tmp/t/another'
 rm '/tmp/t/other'
 rm '/tmp/t/xxx-cache-yyy'
 rm '/tmp/t/xxx-tmp-yyy'
 rm '/tmp/t/xxx-tempt-yyy'

For more information you can also follow this link [https://github.com/sahib/rmlint/issues/399]

Flagging original directories

Sometimes you have a specific path that only contains originals, or only contains
backups. In this case you can flag directories on the commandline by using
a special separator (//) between the duplicate and original paths. Every path
after the // separator is considered to be “tagged” and will be treated as an
original where possible. Tagging always takes precedence over the -S options above.

$ rmlint a // b
ls b/file
rm a/file

If there are more than one tagged files in a duplicate group then the highest
ranked (per -S options) will be kept. In order to never delete any tagged files,
there is the -k (--keep-all-tagged) option. A slightly more esoteric option
is -m (--must-match-tagged), which only looks for duplicates where there is
an original in a tagged path.

Here’s a real world example using these features: You have a portable backup drive with some
old backups on it. You have just backed up your home folder to a new backup drive. You
want to reformat the old backup drive and use it for something else. But first you want
to check that there is nothing on the old drive that you don’t have somewhere else. The
old drive is mounted at /media/portable.

Find all files on /media/portable that can be safely deleted:
$ rmlint --keep-all-tagged --must-match-tagged /media/portable // ~
check the shellscript looks ok:
$ less ./rmlint.sh # or use gedit or any other viewer/editor
run the shellscript to delete the redundant backups
$./rmlint.sh
run again (to delete empty dirs)
$ rmlint -km /media/portable // ~
$./rmlint.sh
see what files are left:
$ tree /media/portable
recover any files that you want to save, then you can safely reformat the drive

In the case of nested mountpoints, it may sometimes makes sense to use the
opposite variations, -K (--keep-all-untagged) and -M (--must-match-untagged).

Finding duplicate directories

Note

--merge-directories is still an experimental option that is non-trivial
to implement. Please double check the output and report any possible bugs.

As far as we know, rmlint is the only duplicate finder that can do this.
Basically, all you have to do is to specify the -D (--merge-directories)
option and rmlint will cache all duplicates until everything is found and
then merge them into full duplicate directories (if any). All other files are
printed normally.

This may sound simple after all, but there are some caveats you should know of.

Let’s create a tricky folder structure to demonstrate the feature:

$ mkdir -p fake/one/two/ fake/one/two_copy fake/one_copy/two fake/one_copy/two_copy
$ echo xxx > fake/one/two/file
$ echo xxx > fake/one/two_copy/file
$ echo xxx > fake/one_copy/two/file
$ echo xxx > fake/one_copy/two_copy/file
$ echo xxx > fake/file
$ echo xxx > fake/another_file

Now go run rmlint on it like that:

$ rmlint fake -D -S a
Duplicate Directorie(s):
 ls -la /home/sahib/rmlint/fake/one
 rm -rf /home/sahib/rmlint/fake/one_copy
 ls -la /home/sahib/rmlint/fake/one/two
 rm -rf /home/sahib/rmlint/fake/one/two_copy

Duplicate(s):
 ls /home/sahib/rmlint/fake/another_file
 rm /home/sahib/rmlint/fake/one/two/file
 rm /home/sahib/rmlint/fake/file

==> In total 6 files, whereof 5 are duplicates in 1 groups.
==> This equals 20 B of duplicates which could be removed.

As you can see it correctly recognized the copies as duplicate directories.
Also, it did not stop at fake/one but also looked at what parts of this
original directory could be possibly removed too.

Files that could not be merged into directories are printed separately. Note
here, that the original is taken from a directory that was preserved. So exactly
one copy of the xxx-content file stays on the filesystem in the end.

rmlint finds duplicate directories by counting all files in the directory
tree and looking up if there’s an equal amount of duplicate and empty files. If
yes, it checks if the hashes are equal using a Merkle Tree. If it matches, it
continues on the parent directory.

Some file like hidden files will not be recognized as duplicates, but still
added to the count. This will of course lead to unmerged directories. That’s why
the -D option implies the -r (--hidden) and -l
(--hardlinked) option in order to make this convenient.

A note to symbolic links: The default behaviour with –merge-directories is to
not follow symbolic links, but to compare the link targets. If the target is the
same, the link will be the same. This is a sane default for duplicate directories,
since twin copies often are created by doing a backup of some files. In this case
any symlinks in the backed-up data will still point to the same target. If you
have symlinks that reference a file in each respective directory tree, consider
using -f.

Warning

Do never ever modify the filesystem (especially deleting files) while
running with the -D option. This can lead to mismatches in the file
count of a directory, possibly causing dataloss. You have been
warned!

Sometimes it might be nice to only search for duplicate directories, banning all
the sole files from littering the screen. While this will not delete all files,
it will give you a nice overview of what you copied where.

Since duplicate directories are just a lint type as every other, you can just
pass it to -T: -T "none +dd" (or -T "none +duplicatedirs").
There’s also a preset of it to save you some typing: -T minimaldirs.

Warning

Also take note that -D will cause a higher memory footprint and might
add a bit of processing time. This is due to the fact that all files need to
be cached till the end and some other internal data structures need to be
created.

Replaying results

Often it is useful to just re-output the results you got from rmlint.
That’s kind of annoying for large datasets, especially when you have big files.
For this, rmlint features a special mode, where it re-outputs the result of
previous runs. By default, rmlint will spit out a .json file (ususally
called rmlint.json). When --replay is given, you can pass one or more
of those .json files to the commandline as they would be normal
directories. rmlint will then merge and re-output then. Note however, that
no filesystem input/output is done.

The usage of the --replay feature is best understood by example:

$ rmlint real-large-dir --progress
... lots of output ...
$ cp rmlint.json large.json # Save json, so we don't overwrite it.
$ rmlint --replay large.json real-large-dir
... same output, just faster ...
$ rmlint --replay large.json --size 2M-512M --sort-by sn real-large-dir
... filter stuff; and rank by size and by size and groupsize
$ rmlint --replay large.json real-large-dir/subdir
... only show stuff in /subdir ...

Warning

Details may differ

The generated output might differ slightly in order and details.
For example the total number of files in the replayed runs will be the total
of entries in the json document, not the total number of traversed files.

Also be careful when replaying on a modified filesystem. rmlint will
ignore files with newer mtime than in the .json file for safety reason.

Warning

Not all options might work

Options that are related to traversing and hashing/reading have no effect.
Those are:

	–followlinks

	–algorithm and –paranoid

	–clamp-low

	–hardlinked

	–write-unfinished

	all other caching options.

Miscellaneous options

If you read so far, you know rmlint pretty well by now.
Here’s just a list of options that are nice to know, but are not essential:

	Consecutive runs of rmlint can be speed up by using --xattr.

$ rmlint large_dataset/ --xattr
$ rmlint large_dataset/ --xattr

Here, the second run should (or might) run a lot faster, since the first
run saved all calculated checksums to the extended attributes of each
processed file. But be sure to read the caveats stated in the manpage [http://rmlint.readthedocs.org/en/latest/rmlint.1.html]!
Especially keep in mind that you need to have write access to the files for this to work.

	-r (--hidden): Include hidden files and directories. The default
is to ignore these, to save you from destroying git repositories (or similar
programs) that save their information in a .git directory where rmlint
often finds duplicates.

If you want to be safe you can do something like this:

$ # find all files except everything under .git or .svn folders
$ find . -type d | grep -v '\(.git\|.svn\)' -print0 | rmlint -0 --hidden

But you would have checked the output anyways, wouldn’t you?

	If something ever goes wrong, it might help to increase the verbosity with
-v (up to -vvv).

	Usually the commandline output is colored, but you can disable it explicitly
with -w (--with-color). If stdout or stderr is not a terminal
anyways, rmlint will disable colors itself.

	You can limit the traversal depth with -d (--max-depth):

$ rmlint -d 0
<finds everything in the same working directory>

	If you want to prevent rmlint from crossing mountpoints (e.g. scan a home
directory, but no the HD mounted in there), you can use the -x
(--no-crossdev) option.

	It is possible to tell rmlint that it should not scan the whole file.
With -q (--clamp-low) / -Q (--clamp-top) it is possible to
limit the range to a starting point (-q) and end point (-Q).
The point where to start might be either given as percent value, factor (percent / 100)
or as an absolute offset.

If the file size is lower than the absolute offset, the file is simply ignored.

This feature might prove useful if you want to examine files with a constant header.
The constant header might be different, i.e. by a different ID, but the content might be still
the same. In any case it is advisable to use this option with care.

Example:

Start hashing at byte 100, but not more than 90% of the filesize.
$ rmlint -q 100 -Q .9

Scripting

Sometimes rmlint can’t help you with everything. While we get a lot of
feature request to have some more comfort-options built-in, we have to decline
most of them to make sure that rmlint does not become too bloated. But fret not,
we have lots of possibilities to do some scripting. Let’s look at some common problem
that can be easily solved with some other tools.

Copying unique files

Imagine you have a folder from which you want to extract one copy of each file
by content. This does not only mean unique files, but also original files - but
not their duplicates. This sounds like a job for the uniques formatter
(which outputs all unique paths, one by line) and jq. jq is a great
little tool [https://stedolan.github.io/jq] which makes it really easy to extract data from a json file:

This command produces two files:
- unique_files: Files that have a unique checksum in the directory.
- original_files: Files that have the "is_original" field set to true in the json output.
The '.[1:-1]' part is for filtering the header and footer part of the json response.
$ rmlint t -o json -o uniques:unique_files | jq -r '.[1:-1][] | select(.is_original) | .path' | sort > original_files
Now we only need to combine both files:
$ cat unique_files original_files

Filter by regular expressions

A very often requested feature is to provide something like --include or
--exclude where you could pass a regular expression to include or exclude
some files from traversing. But rmlint is not a clone of find. Instead
you can use find just fine to pipe output into rmlint:

Deduplicate all png pictures that were not modified in the last 24 hours:
$ find ~ -iname '*.png' ! -mtime 0 | rmlint -

 Graphical user interface

Graphical user interface

As of rmlint \(\geq 2.4.0\) a GUI frontend called Shredder is
shipped alongside of rmlint. It is written in Python and uses no external
dependencies beside gtk+ \(\geq 3.14\) and PyGObject.

 Cautions (or why it’s hard to write a dupefinder)

Cautions (or why it’s hard to write a dupefinder)

This section covers good practice for safe duplicate removal. It is not intended to
be specifically related to rmlint. It includes general discussion on duplicate
detection and shows, by example, some of the traps that duplicate finders can fall into.
This section might not only be useful for developers of dupe finders, but also
educational for users that strive for best practices regarding deduplication.

Good Practice when Deleting Duplicates

Backup your data

There is a wise adage, “if it’s not backed up, it’s not important”. It’s just good
practice to keep your important data backed up. In particular, any time you are
contemplating doing major file reorganisations or deletions, that’s a good time to
make sure that your backups are up to date.

What about when you want to clean up your backups by deleting duplicate files from your
backup drive? Well as long as your duplicate file finder is reliable, you shouldn’t have
any problems. Consider replacing the duplicate with a link (hardlink, symlink or reflink)
to the original data. This still frees up the space, but makes it easier to find the file
if and when it comes time to restore files from backup.

Measure twice, cut once

This is a popular saying amongst builders; the same goes for your files. Do at least some
sort of sanity check on which files are going to be deleted. All duplicate file finders
(including rmlint) are capable of identifying false positives or more serious bugs.

Beware of unusual filename characters

Even a space in a filename is capable of causing grief [https://github.com/MrMEEE/bumblebee-Old-and-abbandoned/issues/123]. Make sure your file deletion command
(or the one used by your duplicate finder) has the filename properly escaped.

Consider safe removal options

Rather than deleting duplicates, consider moving them to a holding area or trash
folder. The trash-cli utility [http://github.com/andreafrancia/trash-cli] is one option for this. Alternatively if
using the rmlint shell script you can replace the remove_cmd section as
follows to move the files to /tmp:

remove_cmd() {
 echo 'Deleting:' "$1"
 if original_check "$1" "$2"; then
 if [-z "$DO_DRY_RUN"]; then
 # was: rm -rf "$1"
 mv -p "$1" "/tmp$1"
 fi
 fi
}

Another safe alternative, if your files are on a copy-on-write filesystem such
as btrfs, and you have linux kernel 4.2 or higher, is to use a deduplication
utility such as duperemove or rmlint --dedupe:

$ duperemove -dh original duplicate
$ rmlint --dedupe original duplicate

Both of the above first verify (via the kernel) that original and
duplicate are identical, then modifies duplicate to reference
original’s data extents. Note they do not change the mtime or other
metadata of the duplicate (unlike hardlinks).

If you pass -c sh:link to rmlint, it will even check for you if your
filesystem is capable of reflinks and emit the correct command conveniently.

You might think hardlinking as a safe alternative to deletion, but in fact hardlinking
first deletes the duplicate and then creates a hardlink to the original in its place.
If your duplicate finder has found a false positive, it is possible that you may lose
your data.

Attributes of a Robust Duplicate Finder

(also known as “Traps for young dupe finders”)

Traversal Robustness

Path Doubles

One simple trap for a dupe finder is to not realise that it has reached the same file
via two different paths. This can happen due to user inputting overlapping paths to
traverse, or due to symlinks or other filesystem loops such as bind mounts.
Here’s a simple “path double” example trying to trick a duplicate file finder
by “accidentally” feeding it the same path twice. We’ll use
fdupes [https://github.com/adrianlopezroche/fdupes] for this example:

$ mkdir dir
$ echo "important" > dir/file
$ fdupes -r --delete --noprompt dir dir
[no output]
$ ls dir
file

So far so good, fdupes didn’t fall for the trick. It has a check built-in which looks at
the files’ device and inode numbers, which automatically filters out path doubles.

Let’s try again using the -H option to find hardlinked duplicates:

$ fdupes -r -H --delete --noprompt dir dir
 [+] dir/file
 [-] dir/file
$ ls -l dir/
total 0

Oh dear, our file is gone! The problem is that hardlinks share the same device and inode numbers,
so the inode check is turned off for this option.

Dupe finders rdfind and dupd can also be tricked with the right combination of settings:

$ rdfind -removeidentinode false -deleteduplicates true a a
[snip]
Now deleting duplicates:
Deleted 1 files.
$ ls -l dir/
total 0

$ dupd scan --path /home/foo/a --path /home/foo/a
Files scanned: 2
Total duplicates: 2
Run 'dupd report' to list duplicates.
$ dupd report
Duplicate report from database /home/foo/.dupd_sqlite:
20 total bytes used by duplicates:
 /home/foo/a/data
 /home/foo/a/data

Solution:

For a duplicate finder to be able to find hardlinked duplicates, without also inadvertently
identifying a file as a duplicate or itself, a more sophisticated test is required. Path
doubles will always have:

	matching device and inode.

	matching basename.

	parent directories also have matching device and inode.

That seems pretty fool-proof (see rmlint example below) but please file an issue
on our Issue Tracker [https://github.com/sahib/rmlint/issues] if you find an exception.

$ echo "data" > dir/file
$ # rmlint with default settings:
$ rmlint dir dir
==> In total 2 files, whereof 0 are duplicates in 0 groups.
==> This equals 0 B of duplicates which could be removed.
$
$ # rmlint with hardlink duplicate detection enabled:
$ rmlint --hardlinked dir dir
==> In total 2 files, whereof 0 are duplicates in 0 groups.
==> This equals 0 B of duplicates which could be removed.
$ ls dir
file

Symlinks:

“Ah but I’m not silly enough to enter the same path twice” you say. Well maybe so, but
there are other ways that folder traversal can reach the same path twice, for example
via symbolic links:

$ mkdir dir
$ echo "important" > dir/file
$ ln -s dir link
$ fdupes -r --delete --noprompt .
$ ls -l dir/
total 0

Symlinks can make a real mess out of filesystem traversal:

$ mkdir dir
$ cd dir
$ ln -s . link
$ cd ..
$ echo "data" > dir/file
$ fdupes -rHs dir
dir/file
dir/link/file
dir/link/link/file
[snip]
dir/link/file

Set 1 of 1, preserve files [1 - 41, all]:

Solution:

During traversal, the duplicate finder should keep track of all folders visited (by device and inode number).
Don’t re-traverse folders that were already traversed.

Hardlinks:

Also as noted above, replacing duplicates with hardlinks can still end badly if there are
false positives. For example, using rdfind’s the -makehardlinks option:

$ echo "data" > dir/file
$ rdfind -removeidentinode false -makehardlinks true dir dir
[snip]
It seems like you have 2 files that are not unique
Totally, 5 b can be reduced.
Now making results file results.txt
Now making hard links.
failed to make hardlink dir/file to dir/file
$ ls -l dir
total 0

Solution:

Don’t find false positives. Check files are on same filesystem before trying to create hardlink.
Temporarily rename the duplicate before creating the hardlink and then deleting the renamed file.

Collision Robustness

Duplicate detection by file hash

If a duplicate finder uses file hashes to identify duplicates, there is a very
small risk that two different files have the same hash value. This is called a
hash collision and can result in the two files being falsely flagged as
duplicates.

Several duplicate finders use the popular MD5 Hash, which is 128 bits
long. With a 128-bit hash, if you have a million sets of same-size files, each set containing
a million different files, the chance of a hash collision is about
0.000 000 000 000 000 000 147%. To get a 0.1% chance of a hash collision you would
need nine hundred thousand million (\(9\times10^{11}\)) groups of (\(9\times10^{11}\)) files each, or one group
of eight hundred thousand million million (\(8\times10^{17}\)) files.

If someone had access to your files, and wanted to create a malicious duplicate, they
could potentially do something like this (based on http://web.archive.org/web/20071226014140/http://www.cits.rub.de/MD5Collisions/):

$ mkdir test && cd test
$ # get two different files with same md5 hash:
$ wget http://web.archive.org/web/20071226014140/http://www.cits.rub.de/imperia/md/content/magnus/order.ps
$ wget http://web.archive.org/web/20071226014140/http://www.cits.rub.de/imperia/md/content/magnus/letter_of_rec.ps
$ md5sum * # verify that they have the same md5sum
a25f7f0b29ee0b3968c860738533a4b9 letter_of_rec.ps
a25f7f0b29ee0b3968c860738533a4b9 order.ps
$ sha1sum * # verify that they are not actually the same
07835fdd04c9afd283046bd30a362a6516b7e216 letter_of_rec.ps
3548db4d0af8fd2f1dbe02288575e8f9f539bfa6 order.ps
$ rmlint -a md5 . -o pretty # run rmlint using md5 hash for duplicate file detection
Duplicate(s):
 ls '/home/foo/test/order.ps'
 rm '/home/foo/test/letter_of_rec.ps'
$ rmlint test -a sha1 -o summary # run using sha1 hash
==> In total 2 files, whereof 0 are duplicates in 0 groups.

If your intention was to free up space by hardlinking the duplicate to the original, you would end up with two
hardlinked files, one called order.ps and the other called
letter_of_rec.ps, both containing the contents of order.ps.

Solution:

fdupes detects duplicates using MD5 Hashes, but eliminates the collision
risk by doing a byte-wise comparison of the duplicates detected. This means
each file is read twice, which can tend to slow things down.

dupd uses direct file comparison, unless there are more than 3 files in a set of duplicates, in which
case it uses MD5 only.

If you use rmlint’s sha1 hash features, which features 160 bit output,
you need at least \(5.4\times10^{22}\) files before you get a \(0.1\%\)
probability of collision. rmlint’s -p option uses SHA512
(\(5.2\times10^{75}\) files for \(0.1\%\) risk), while rmlint’s
-pp option uses direct file comparison to eliminate the risk altogether.
Refer to the Benchmarks chapter for speed and memory overhead
implications.

Unusual Characters Robustness

Spaces, commas, nonprinting characters etc can all potentially trip up a duplicate finder or the subsequent file
deletion command. For example:

$ mkdir test
$ echo "data" > 'test/\t\r\"\b\f\\,.'
$ cp test/\\t\\r\\\"\\b\\f\\\\\,. test/copy # even just copying filenames like this is ugly!
$ ls -1 test/
copy
\t\r\"\b\f\\,.
$ md5sum test/* # md5's output gets a little bit mangled by the odd characters
6137cde4893c59f76f005a8123d8e8e6 test/copy
\6137cde4893c59f76f005a8123d8e8e6 test/\\t\\r\\"\\b\\f\\\\,.
$ dupd scan --path /home/foo/test
SKIP (comma) [/home/foo/test/\t\r\"\b\f\\,.]
Files scanned: 1
Total duplicates: 0

Solution: Be careful!

“Seek Thrash” Robustness

Duplicate finders use a range of strategies to find duplicates. It is common to reading and compare small increments
of potential duplicates. This avoids the need to read the whole file if the files differ in the first few megabytes,
so this can give a major speedup in some cases. However, in the case of hard disk drives, constantly reading small
increments from several files at the same time causes the hard drive head to have to jump around (“seek thrash”).

Here are some speed test results showing relative speed for scanning my /usr folder (on SSD) and an HDD copy of same.
The speed ratio gives an indication of how effectively the search algorithm manages disk seek overheads:

	Program

	/usr (SSD)

	/mnt/usr (HDD)

	Ratio

	dupd

	48s

	1769s

	36.9

	fdupes

	65s

	486s

	7.5

	rmlint

	38s

	106s

	2.8

	rmlint -pp

	40s

	139s

	3.5

Note

Before each run, disk caches were cleared:

$ sync && echo 3 | sudo tee /proc/sys/vm/drop_caches

Solution:

Achieving good speeds on HDD’s requires a balance between small file increments early on, then switching to
bigger file increments. Fiemap information (physical location of files on the disk) can be used to sort the
files into an order that reduces disk seek times.

Memory Usage Robustness

When scanning very large filesystems, duplicate finders may have to hold a large amount of information in
memory at the same time. Once this information exceeds the computers’ RAM, performance will suffer
significantly. dupd handles this quite nicely by storing a lot of the data in a sqlite database file,
although this may have a slight performance penalty due to disk read/write time to the database file.
rmlint uses a path tree structure to reduce the memory required to store all traversed paths.

 Frequently Asked Questions

Frequently Asked Questions

rmlint finds more/less dupes than tool X!

Make sure that none of the following applies to you:

Both tools might investigate a different number of files. rmlint e.g. does not
look through hidden files by default, while other tools might follow symlinks
by default. Suspicious options you should look into are:

	--hidden: Disabled by default, since it might screw up .git/ and similar directories.

	--hardlinked: Might find larger amount files, but not more lint itself.

	--followlinks: Might lead rmlint to different places on the filesystem.

	--merge-directories: pulls in both --hidden and --hardlinked.

If there’s still a difference, check with another algorithm. In particular use
-pp to enable paranoid mode. Also make sure to have -D
(--merge-directories) disabled to see the raw number of duplicate files.

Still here? Maybe talk to us on the issue tracker [https://github.com/sahib/rmlint/issues].

Can you implement feature X?

Depends. Go to to the issue tracker [https://github.com/sahib/rmlint/issues] and open a feature request.

Here is a list of features where you probably have no chance:

	Port it to Windows.

	Find similar files like ssdeep does.

I forgot to add some options before running on a large dataset. Do I need to re-run it?

Probably not. Since rmlint 2.3.0 there is --replay which can be used to
to re-output a json file of a prior run.

If you have changed the filesystem that might not be a good idea of course. In
this case you’ll have to re-run, but it’s not as bad as it sounds though. Your
filesystem is probably very good at caching.

If you only want to see the difference to what changed since last time you can
look into -n --newer-than-stamp / -N --newer-than.

In some cases you might really need to re-run, but if that happens often, you
might look into --xattr-write and --xattr-read which is capable
of writing finished checksums to extended attributes of each processed file.

I have a very large number of files and I run out of memory and patience.

As a rule of thumb, rmlint will allocate ~150 bytes for every file it will
investigate. Additionally paths are stored in a patricia trie, which will
compress paths and save memory therefore.

The memory peak is usually shortly after it finished traversing all
files. For example, 5 million files will result in a memory footprint of roughly
1.0GB of memory in average.

Some things to consider:

	Enable the progress bar with -g to keep track of how much data is left to
scan.

Also:

rmlint have been successfully used on datasets of 5 million files. See this
bug report for more information: #109 [https://github.com/sahib/rmlint/issues/109].

 Developer’s Guide

Developer’s Guide

This guide is targeted to people that want to write new features or fix bugs in rmlint.

Bugs

Please use the issue tracker to post and discuss bugs and features:

https://github.com/sahib/rmlint/issues

Philosophy

We try to adhere to some principles when adding features:

	Try to stay compatible to standard unix’ tools and ideas.

	Try to stay out of the users way and never be interactive.

	Try to make scripting as easy as possible.

	Never make rmlint modify the filesystem itself, only produce output
to let the user easily do it.

Also keep this in mind, if you want to make a feature request.

Making contributions

The code is hosted on GitHub, therefore our preferred way of receiving patches
is using GitHub’s pull requests (normal git pull requests are okay too of course).

Note

origin/master should always contain working software. Base your patches
and pull requests always on origin/develop.

Here’s a short step-by-step:

	Fork it [https://github.com/sahib/rmlint].

	Create a branch from develop. (git checkout develop && git checkout -b my_feature)

	Commit your changes. (git commit -am "Fixed it all.")

	Check if your commit message is good. (If not: git commit --amend)

	Push to the branch (git push origin my_feature)

	Open a Pull Request [http://github.com/sahib/rmlint/pulls] against the develop [https://github.com/sahib/rmlint/tree/develop] branch.

	Enjoy a refreshing Tea and wait until we get back to you.

Here are some other things to check before submitting your contribution:

	Does your code look alien to the other code? Is the style the same?
You can run this command to make sure it is the same:

$ clang-format -style=file -i $(find lib src -iname '*.[ch]')

	Do all tests run? Go to the test documentation [https://github.com/sahib/rmlint/blob/develop/tests/README.rst] for more info.
Also after opening the pull request, your code will be checked via TravisCI [https://travis-ci.org/sahib/rmlint].

	Is your commit message descriptive? whatthecommit.com [http://whatthecommit.com/] has some good
examples how they should not look like.

	Is rmlint running okay inside of valgrind (i.e. no leaks and no memory violations)?

For language-translations/updates it is also okay to send the .po files via
mail at sahib@online.de, since not every translator is necessarily a
software developer.

Testsuite

rmlint has a not yet complete but quite powerful testsuite. It is not
complete yet (and probably never will), but it’s already a valuable boost of
confidence in rmlint's correctness.

The tests are based on nosetest and are written in python>=3.0.
Every testcase just runs the (previously built) rmlint binary a
and parses its json output. So they are technically blackbox-tests.

On every commit, those tests are additionally run on TravisCI [https://travis-ci.org/sahib/rmlint].

Control Variables

The behaviour of the testsuite can be controlled by certain environment
variables which are:

	RM_TS_DIR: Testdir to create files in. Can be very large with some tests,
sometimes tmpfs might therefore slow down your computer. By default
/tmp will be used.

	RM_TS_USE_VALGRIND: Run each test inside of valgrind’s memcheck. (slow)

	RM_TS_CHECK_LEAKS: Fail test if valgrind indicates (definite) memory leak.

	RM_TS_USE_GDB: Run tests inside of gdb. Fatal signals will trigger a
backtrace.

	RM_TS_PEDANTIC: Run each test several times with different optimization options
and check for errors between the runs. (slow).

	RM_TS_SLEEP: Waits a long time before executing a command. Useful for
starting the testcase and manually running rmlint on the priorly generated
testdir.

	RM_TS_PRINT_CMD: Print the command that is currently run.

	RM_TS_KEEP_TESTDIR: If a test failed, keep the test files.

Additionally slow tests can be omitted with by appending -a '!slow' to
the commandline. More information on this syntax can be found on the nosetest
documentation [http://nose.readthedocs.org/en/latest/plugins/attrib.html].

Before each release we call the testsuite (at least) like this:

$ sudo RM_TS_USE_VALGRIND=1 RM_TS_PRINT_CMD=1 RM_TS_PEDANTIC=1 nosetests-3.4 -s -a '!slow !known_issue'

The sudo here is there for executing some tests that need root access (like
the creating of bad user and group ids). Most tests will work without.

Coverage

To see which functions need more testcases we use gcov to detect which lines
were executed (and how often) by the testsuite. Here’s a short quickstart using
lcov:

$ CFLAGS="-fprofile-arcs -ftest-coverage" LDFLAGS="-fprofile-arcs -ftest-coverage" scons -j4 DEBUG=1
$ sudo RM_TS_USE_VALGRIND=1 RM_TS_PRINT_CMD=1 RM_TS_PEDANTIC=1 nosetests-3.4 -s -a '!slow !known_issue'
$ lcov --capture --directory . --output-file coverage.info
$ genhtml coverage.info --output-directory out

The coverage results are updated from time to time here:

http://sahib.github.io/rmlint/gcov/index.html

Structure

tests
├── test_formatters # Tests for output formatters (like sh or json)
├── test_options # Tests for normal options like --merge-directories etc.
├── test_types # Tests for all lint types rmlint can find
└── utils.py # Common utilities shared among tests.

Templates

A template for a testcase looks like this:

from nose import with_setup
from tests.utils import *

@with_setup(usual_setup_func, usual_teardown_func)
def test_basic():
 create_file('xxx', 'a')
 create_file('xxx', 'b')

 head, *data, footer = run_rmlint('-a city -S a')

 assert footer['duplicate_sets'] == 1
 assert footer['total_lint_size'] == 3
 assert footer['total_files'] == 2
 assert footer['duplicates'] == 1

Rules

	Test should be able to run as normal user.

	If that’s not possible, check at the beginning of the testcase with this:

if not runs_as_root():
 return

	Regressions in rmlint should get their own testcase so they do not
appear again.

	Slow tests can be marked with a slow attribute:

from nose.plugins.attrib import attr

@attr('slow')
@with_setup(usual_setup_func, usual_teardown_func)
def test_debian_support():
 assert random.choice([True, False]):

	Unresolved issues can be marked with known_issue attribute to avoid failing automated travis testing

Buildsystem Helpers

Environment Variables

	CFLAGS

	Extra flags passed to the compiler.

	LDFLAGS

	Extra flags passed to the linker.

	CC

	Which compiler to use?

Use clang and enable profiling, verbose build and enable debugging
CC=clang CFLAGS='-pg' LDFLAGS='-pg' scons VERBOSE=1 DEBUG=1

Variables

	O=<level>

	Set the optimization level.

Valid levels are currently those that may be passed with the GCC/Clang
option -O; these include 0, 1, 2, 3, s,
fast, g, etc., depending on the compiler version.

In addition, the level may be debug or release, which indicates
that the optimization level should be whatever the build system currently
defines to be the default for the associated build mode.

	DEBUG=1

	Enable a debugging build.

This turns on extra tests; in particular, it turns on run-time
assertions. By default, a debug build excludes optimizations that may
hinder debugging, but this may be overridden with the O variable,
as usual.

Note that setting DEBUG=1 does not enable the production of
debugger symbols; to enable those, use SYMBOLS=1 or GDB=1.

This should always be enabled during development.

	SYMBOLS=1

	Enable debugger symbols.

This option instructs the compiler to collect information that will
help tools such as gdb present human-readable identifiers for
a program’s functions and variables, etc. Note, though, that this
information becomes obscured by optimizations, so make sure to set
the optimization level appropriately.

	GDB=1

	Enable options that help a debugger (such as gdb).

This option is equivalent to DEBUG=1 SYMBOLS=1.

	VERBOSE=1

	Print the exact compiler and linker commands. Useful for troubleshooting
build errors.

	CCFLAGS=<command line options>

	Set the last compiler options.

Internally, the build system maintains in CCFLAGS the list of
options that are supplied to the compiler; this list is composed by
combining the relevant environment variables (such as CFLAGS)
along with the choices made by other build-time configurations.

This command-line variable makes it possible to override an option in
this list by supplying customized command-line options to be appended.
For example: GDB=1 CCFLAGS=-g1.

The string that is supplied as the value for this variable is parsed as
per a POSIX shell command line, and so it may include shell quoting if
necessary.

Arguments

	–prefix

	Change the installation prefix. By default this is /usr, but some users
might prefer /usr/local or /opt.

	–actual-prefix

	This is mainly useful for packagers. The rmlint binary knows where it
is installed (which is needed to set e.g. the path to the gettext files).
When installing a package, most of the time the build is installed to
a local test environment first before being packed to /usr. In this
case the --prefix would be set to the path of the temporary build env,
while --actual-prefix would be set to /usr.

	–libdir

	Some distributions like Fedora use separate libdirectories for 64/32 bit.
If this happens, you should set the correct one for 64 bit with
--libdir=lib64.

	–without-libelf

	Do not link with libelf, which is needed for nonstripped binary
detection.

	–without-blkid

	Do not link with libblkid, which is needed to differentiate between
normal rotational harddisks and non-rotational disks.

	–without-json-glib

	Do not link with libjson-glib, which is needed to load json-cache files.
Without this library a warning is printed when using --replay.

	–without-fiemap

	Do not attempt to use the FIEMAP ioctl(2).

	–without-gettext

	Do not link with libintl and do not compile any message catalogs.

All --without-* options come with a --with-* option that inverses its
effect. By default rmlint is built with all features available on the
system, so you do not need to specify any --with-* option normally.

Notable targets

	install

	Install all program parts system-wide.

	config

	Print a summary of all features that will be compiled and what the
environment looks like.

	man

	Build the manpage.

	docs

	Build the online html docs (which you are reading now).

	test

	Build the tests (requires python and nosetest installed).
Optionally valgrind can be installed to run the tests through
valgrind:

$ USE_VALGRIND=1 nosetests # or nosetests-3.3, python3 needed.

	xgettext

	Extract a gettext .pot template from the source.

	dist

	Build a tarball suitable for release. Save it under
rmlint-$major-$minor-$patch.tar.gz.

	release

	Same as dist, but reads the .version file and replaces the current
version in the files that are not built by scons.

Sourcecode layout

	All C-source lives in lib, the file names should be self explanatory.

	As an exception, the main lives in src/rmlint.c.

	All documentation is inside docs.

	All translation stuff should go to po.

	All packaging should be done in pkg/<distribution>.

	Tests are written in Python and live in tests.

Hashfunctions

Here is a short comparison of the existing hashfunctions [https://raw.githubusercontent.com/sahib/rmlint/gh-pages/plots/hash_comparasion_log.png] in rmlint (linear [https://raw.githubusercontent.com/sahib/rmlint/gh-pages/plots/hash_comparasion_lin.png] scale).
For reference: Those plots were rendered with these [https://github.com/sahib/rmlint/tree/gh-pages/plots] sources - which are very ugly, sorry.

If you want to add new hashfunctions, you should have some arguments why it is valuable and possibly
even benchmark it with the above scripts to see if it’s really that much faster.

Also keep in mind that most of the time the hashfunction is not the bottleneck.

Optimizations

For sake of overview, here is a short list of optimizations implemented in rmlint:

Obvious ones

	Do not compare each file with each other by content, use a hashfunction to reduce
comparison overhead drastically (introduces possibility of collisions though).

	Only compare files of same size with each other.

	Use incremental hashing, i.e. hash block-wise each size group and stop
as soon a difference occurs or the file is read fully.

	Create one reading thread for each physical disk. This gives a big speedup if
files are roughly evenly spread over multiple physical disks [note: currently
using 2 reading threads per disk as a workaround for a speed regression but
hoping to fix this for rmlint 2.5].

	Disk traversal is similarly multi-threaded, one thread per disk.

	Create separate hashing threads (one for each file) so that the reader threads
don’t have to wait for hashing to catch up.

Subtle ones

	Check only executable files to be non-stripped binaries.

	Use preadv(2) based reading for small speeedups.

	Every thread in rmlint is shared, so only few calls to pthread_create are made.

Insane ones

	Use fiemap ioctl(2) to analyze the harddisk layout of each file, so each
block can read it in perfect order on a rotational device.

	Check the device ID of each file to see if it on a rotational (normal hard
disks) or on a non-rotational device (like an SSD). On the latter the fiemap
optimisation is bypassed.

	Use a common buffer pool for IO buffers and recycle used buffers to reduce
memory allocation overheads.

	Use only one hashsum per group of same-sized files.

	Implement paranoia check using the same algorithm as the incremental hash. The
difference is that large chunks of the file are read and kept in memory instead
of just keeping the hash in memory. This avoids the need for a two-pass algorithm
(find matches using hashes then confirm via bytewise comparison). Each file is
read once only. This achieves bytewise comparison in O(N) time, even if there are
large clusters of same-size files. The downside is that it is somewhat memory-intensive
(can be configured by --limit-mem option).

 Translating rmlint

Translating rmlint

Rudimentary support for internationalization is provided via gettext.
Also see this Issue [https://github.com/sahib/rmlint/issues/146] for a list of translators, current translations and a
wish-list of new translations.

Adding new languages

Fork a new .po file from the po-template (here swedish):
$ msginit -i po/rmlint.pot -o po/se.po --locale se --no-translator

Edit the po/se.po file, the format is self describing
$ vim po/se.po

.po files need to be compiled, but that's handled by scons already.
$ scons
$ scons install

You should see your changes now:
$ LANG=se ./rmlint

If you’d like to contribute your new translation you want to do a pull request
(if you really dislike that, you may also send the translation to us via mail).
Here [http://rmlint.readthedocs.org/en/latest/developers.html] is a small introduction on Pull Requests.

Updating existing languages

Edit the file to your needs:
$ vim po/xy.po

Install:
$ scons install

Done
$ LANG=xy ./rmlint

Marking new strings for translations

If you want to mark strings in the C-code to be translated,
you gonna need to mark them so the xgettext can find it.
The latter tool goes through the source and creates a template file
with all translations left out.

/* Mark the string with the _() macro */
fprintf(out, _("Stuff is alright: %s\n"), (alright) ? "yes" : "no");

It gets a little harder when static strings need to be marked, since they cannot be
translated during compile time. You have to mark them first and translate them at a later point:

static const char * stuff = _N("Hello World");

void print_world(void) {
 printf("World is %s\n", _(stuff));
}

After you’re done with marking the new strings, you have to update the
gettext files:

$ scons gettext

Then, proceed to work with the relevant *.po file as described above.

 Benchmarks

Benchmarks

This page contains the images that our benchmark suite renders for the current
release. Inside the benchmark suite, rmlint is challenged against other
popular and some less known duplicate finders. Apart from that a very dumb
duplicate finder called baseline.py is used to see how slow a program would
be that would blindly hash all files it finds. Luckily none of the programs is
that slow. We’ll allow us a few remarks on the plots, although we focus a bit
on rmlint. You’re of course free to interpret something different or re-run [https://github.com/sahib/rmlint/issues/131]
the benchmarks on your own machine. The exact version of each program is given
in the plots.

Warning

This page is a little out of date. Help in updating it would be appreciated.
The performance characteristics of rmlint have improved overall, but
so might have other tools.

It should be noted that it is very hard to compare these tools, since each
tool investigated a slightly different amount of data and produces different
results on the dataset below. This is partly due to the fact that some tools
count empty files and hardlinks as duplicates, while rmlint does not. Partly
it might also be false positives, missed files or, in some tools, paths that
contain a ‘,’ [https://github.com/jvirkki/dupd/blob/master/src/scan.c#L83]. For rmlint we verified that no false positives are in the
set.

Here are some statistics on the datasets /usr and /mnt/music. /usr
is on a btrfs filesystem that is located on an SSD with many small files,
while /mnt/music is located on a rotational disk with ext4 as
filesystem. The amount of available memory was 8GB.

$ du -hs /usr
7,8G /usr
$ du -hs /mnt/music
213G /mnt/music
$ find /usr -type f ! -empty | wc -l
284075
$ find /mnt/music -type f ! -empty | wc -l
37370
$ uname -a
Linux werkstatt 3.14.51-1-lts #1 SMP Mon Aug 17 19:21:08 CEST 2015 x86_64 GNU/Linux

[image: _images/timing.svg]

Note: This plot uses logarithmic scaling for the time.

It should be noted that the first run is the most important run. At least for a
rather large amount of data (here 211 GB), it is unlikely that the file system
has all relevant files in its cache. You can see this with the second run of
baseline.py - when reading all files the cache won’t be useful at such large
file quantities. The other tools read only a partial set of files and can thus
benefit from caching on the second run. However rmlint (and also dupd)
support fast re-running (see rmlint-replay) which makes repeated runs very
fast. It is interesting to see rmlint-paranoid (no hash, incremental
byte-by-byte comparison) to be mostly equally fast as the vanilla rmlint.

[image: _images/cpu_usage.svg]

rmlint has the highest CPU footprint here, mostly due to its multithreaded
nature. Higher CPU usage is not a bad thing since it might indicate that the program
spends more time hashing files instead of switching between hashing and reading.
dupd seems to be pretty efficient here, especially on re-runs.
rmlint-replay has a high CPU usage here, but keep in mind that it does
(almost) no IO and only has to repeat previous outputs.

[image: _images/memory.svg]

The most memory efficient program here seems to be rdfind which uses even
less than the bare bone baseline.py (which does not much more than holding a
hashtable). The well known fdupes is also low on memory footprint.

Before saying that the paranoid mode of rmlint is a memory hog, it should be
noted (since this can’t be seen on those plots) that the memory consumption
scales very well. Partly because rmlint saves all paths in a Trie [https://en.wikipedia.org/wiki/Radix_tree], making
it usable for \(\geq\) 5M files [https://github.com/sahib/rmlint/issues/109]. Also it is able to control the amount of
memory it uses (--limit-mem). Due to the high amount of internal data
structures it however has a rather large base memory footprint.

dupd uses direct file comparison for groups of two and three files and hash
functions for the rest. It seems to have a rather high memory footprint in any
case.

 		fdupes	rmlint	rmlint-paranoid	rmlint-replay	rmlint-v2.2.2	rmlint-v2.2.2-paranoid	rmlint-xxhash	rmlint-old	dupd	baseline.py

 	Duplicates	27.203k	27.203k	27.203k	27.203k	27.203k	27.203k	27.203k	39.656k	43.217k	67.931k

 rmlint

rmlint

find duplicate files and other space waste efficiently

SYNOPSIS

rmlint [TARGET_DIR_OR_FILES …] [//] [TAGGED_TARGET_DIR_OR_FILES …] [-] [OPTIONS]

DESCRIPTION

rmlint finds space waste and other broken things on your filesystem.
It’s main focus lies on finding duplicate files and directories.

It is able to find the following types of lint:

	Duplicate files and directories (and as a by-product unique files).

	Nonstripped Binaries (Binaries with debug symbols; needs to be explicitly enabled).

	Broken symbolic links.

	Empty files and directories (also nested empty directories).

	Files with broken user or group id.

rmlint itself WILL NOT DELETE ANY FILES. It does however produce executable
output (for example a shell script) to help you delete the files if you want
to. Another design principle is that it should work well together with other
tools like find. Therefore we do not replicate features of other well know
programs, as for example pattern matching and finding duplicate filenames.
However we provide many convenience options for common use cases that are hard
to build from scratch with standard tools.

In order to find the lint, rmlint is given one or more directories to traverse.
If no directories or files were given, the current working directory is assumed.
By default, rmlint will ignore hidden files and will not follow symlinks (see
Traversal Options). rmlint will first find “other lint” and then search
the remaining files for duplicates.

rmlint tries to be helpful by guessing what file of a group of duplicates
is the original (i.e. the file that should not be deleted). It does this by using
different sorting strategies that can be controlled via the -S option. By
default it chooses the first-named path on the commandline. If two duplicates
come from the same path, it will also apply different fallback sort strategies
(See the documentation of the -S strategy).

This behaviour can be also overwritten if you know that a certain directory
contains duplicates and another one originals. In this case you write the
original directory after specifying a single // on the commandline.
Everything that comes after is a preferred (or a “tagged”) directory. If there
are duplicates from an unpreferred and from a preferred directory, the preferred
one will always count as original. Special options can also be used to always
keep files in preferred directories (-k) and to only find duplicates that
are present in both given directories (-m).

We advise new users to have a short look at all options rmlint has to
offer, and maybe test some examples before letting it run on productive data.
WRONG ASSUMPTIONS ARE THE BIGGEST ENEMY OF YOUR DATA. There are some extended
example at the end of this manual, but each option that is not self-explanatory
will also try to give examples.

OPTIONS

General Options

	-T --types="list" (default: defaults)

	Configure the types of lint rmlint will look for. The list string is a
comma-separated list of lint types or lint groups (other separators like
semicolon or space also work though).

One of the following groups can be specified at the beginning of the list:

	all: Enables all lint types.

	defaults: Enables all lint types, but nonstripped.

	minimal: defaults minus emptyfiles and emptydirs.

	minimaldirs: defaults minus emptyfiles, emptydirs and
duplicates, but with duplicatedirs.

	none: Disable all lint types [default].

Any of the following lint types can be added individually, or deselected by
prefixing with a -:

	badids, bi: Find files with bad UID, GID or both.

	badlinks, bl: Find bad symlinks pointing nowhere valid.

	emptydirs, ed: Find empty directories.

	emptyfiles, ef: Find empty files.

	nonstripped, ns: Find nonstripped binaries.

	duplicates, df: Find duplicate files.

	duplicatedirs, dd: Find duplicate directories (This is the same -D!)

WARNING: It is good practice to enclose the description in single or
double quotes. In obscure cases argument parsing might fail in weird ways,
especially when using spaces as separator.

Example:

$ rmlint -T "df,dd" # Only search for duplicate files and directories
$ rmlint -T "all -df -dd" # Search for all lint except duplicate files and dirs.

	-o --output=spec / -O --add-output=spec (default: -o sh:rmlint.sh -o pretty:stdout -o summary:stdout -o json:rmlint.json)

	Configure the way rmlint outputs its results. A spec is in the form
format:file or just format. A file might either be an
arbitrary path or stdout or stderr. If file is omitted, stdout
is assumed. format is the name of a formatter supported by this
program. For a list of formatters and their options, refer to the
Formatters section below.

If -o is specified, rmlint’s default outputs are overwritten. With
--O the defaults are preserved. Either -o or -O may be
specified multiple times to get multiple outputs, including multiple
outputs of the same format.

Examples:

$ rmlint -o json # Stream the json output to stdout
$ rmlint -O csv:/tmp/rmlint.csv # Output an extra csv fle to /tmp

	-c --config=spec[=value] (default: none)

	Configure a format. This option can be used to fine-tune the behaviour of
the existing formatters. See the Formatters section for details on the
available keys.

If the value is omitted it is set to a value meaning “enabled”.

Examples:

$ rmlint -c sh:link # Smartly link duplicates instead of removing
$ rmlint -c progressbar:fancy # Use a different theme for the progressbar

	-z --perms[=[rwx]] (default: no check)

	Only look into file if it is readable, writable or executable by the current user.
Which one of the can be given as argument as one of “rwx”.

If no argument is given, “rw” is assumed. Note that r does basically
nothing user-visible since rmlint will ignore unreadable files anyways.
It’s just there for the sake of completeness.

By default this check is not done.

$ rmlint -z rx $(echo $PATH | tr ":" " ") # Look at all executable files in $PATH

	-a --algorithm=name (default: blake2b)

	Choose the algorithm to use for finding duplicate files. The algorithm can be
either paranoid (byte-by-byte file comparison) or use one of several file hash
algorithms to identify duplicates. The following hash families are available (in
approximate descending order of cryptographic strength):

sha3, blake,

sha,

highway, md

metro, murmur, xxhash

The weaker hash functions still offer excellent distribution properties, but are potentially
more vulnerable to malicious crafting of duplicate files.

The full list of hash functions (in decreasing order of checksum length) is:

512-bit: blake2b, blake2bp, sha3-512, sha512

384-bit: sha3-384,

256-bit: blake2s, blake2sp, sha3-256, sha256, highway256, metro256, metrocrc256

160-bit: sha1

128-bit: md5, murmur, metro, metrocrc

64-bit: highway64, xxhash.

The use of 64-bit hash length for detecting duplicate files is not recommended, due to the
probability of a random hash collision.

	-p --paranoid / -P --less-paranoid (default)

	Increase or decrease the paranoia of rmlint’s duplicate algorithm.
Use -p if you want byte-by-byte comparison without any hashing.

	-p is equivalent to –algorithm=paranoid

	-P is equivalent to –algorithm=highway256

	-PP is equivalent to –algorithm=metro256

	-PPP is equivalent to –algorithm=metro

	-v --loud / -V --quiet

	Increase or decrease the verbosity. You can pass these options several
times. This only affects rmlint’s logging on stderr, but not the
outputs defined with -o. Passing either option more than three times
has no further effect.

	-g --progress / -G --no-progress (default)

	Show a progressbar with sane defaults.

Convenience shortcut for -o progressbar -o summary -o sh:rmlint.sh -o json:rmlint.json -VVV.

NOTE: This flag clears all previous outputs. If you want additional
outputs, specify them after this flag using -O.

	-D --merge-directories (default: disabled)

	Makes rmlint use a special mode where all found duplicates are collected and
checked if whole directory trees are duplicates. Use with caution: You
always should make sure that the investigated directory is not modified
during rmlint’s or its removal scripts run.

IMPORTANT: Definition of equal: Two directories are considered equal by
rmlint if they contain the exact same data, no matter how the files
containing the data are named. Imagine that rmlint creates a long,
sorted stream out of the data found in the directory and compares this in
a magic way to another directory. This means that the layout of the
directory is not considered to be important by default. Also empty files
will not count as content. This might be surprising to some users, but
remember that rmlint generally cares only about content, not about any
other metadata or layout. If you want to only find trees with the same hierarchy
you should use --honour-dir-layout / -j.

Output is deferred until all duplicates were found. Duplicate directories
are printed first, followed by any remaining duplicate files that are isolated
or inside of any original directories.

–rank-by applies for directories too, but ‘p’ or ‘P’ (path index)
has no defined (i.e. useful) meaning. Sorting takes only place when the number of
preferred files in the directory differs.

NOTES:

	This option enables --partial-hidden and -@ (--see-symlinks)
for convenience. If this is not desired, you should change this after
specifying -D.

	This feature might add some runtime for large datasets.

	When using this option, you will not be able to use the -c sh:clone option.
Use -c sh:link as a good alternative.

	-j --honour-dir-layout (default: disabled)

	Only recognize directories as duplicates that have the same path layout. In
other words: All duplicates that build the duplicate directory must have
the same path from the root of each respective directory.
This flag makes no sense without --merge-directories.

	-y --sort-by=order (default: none)

	During output, sort the found duplicate groups by criteria described by order.
order is a string that may consist of one or more of the following letters:

	s: Sort by size of group.

	a: Sort alphabetically by the basename of the original.

	m: Sort by mtime of the original.

	p: Sort by path-index of the original.

	o: Sort by natural found order (might be different on each run).

	n: Sort by number of files in the group.

The letter may also be written uppercase (similar to -S /
--rank-by) to reverse the sorting. Note that rmlint has to hold
back all results to the end of the run before sorting and printing.

	-w --with-color (default) / -W --no-with-color

	Use color escapes for pretty output or disable them.
If you pipe rmlints output to a file -W is assumed automatically.

	-h --help / -H --show-man

	Show a shorter reference help text (-h) or the full man page (-H).

	--version

	Print the version of rmlint. Includes git revision and compile time
features. Please include this when giving feedback to us.

Traversal Options

	-s --size=range (default: “1”)

	Only consider files as duplicates in a certain size range.
The format of range is min-max, where both ends can be specified
as a number with an optional multiplier. The available multipliers are:

	C (1^1), W (2^1), B (512^1), K (1000^1), KB (1024^1), M (1000^2), MB (1024^2), G (1000^3), GB (1024^3),

	T (1000^4), TB (1024^4), P (1000^5), PB (1024^5), E (1000^6), EB (1024^6)

The size format is about the same as dd(1) uses. A valid example would
be: “100KB-2M”. This limits duplicates to a range from 100 Kilobyte to
2 Megabyte.

It’s also possible to specify only one size. In this case the size is
interpreted as “bigger or equal”. If you want to filter for files
up to this size you can add a - in front (-s -1M == -s 0-1M).

Edge case: The default excludes empty files from the duplicate search.
Normally these are treated specially by rmlint by handling them as
other lint. If you want to include empty files as duplicates you should
lower the limit to zero:

$ rmlint -T df --size 0

	-d --max-depth=depth (default: INF)

	Only recurse up to this depth. A depth of 1 would disable recursion and is
equivalent to a directory listing. A depth of 2 would also consider all
children directories and so on.

	-l --hardlinked (default) / --keep-hardlinked / -L --no-hardlinked

	Hardlinked files are treated as duplicates by default (--hardlinked). If
--keep-hardlinked is given, rmlint will not delete any files that are
hardlinked to an original in their respective group. Such files will be
displayed like originals, i.e. for the default output with a “ls” in front.
The reasoning here is to maximize the number of kept files, while maximizing
the number of freed space: Removing hardlinks to originals will not allocate
any free space.

If –no-hardlinked is given, only one file (of a set of hardlinked files)
is considered, all the others are ignored; this means, they are not
deleted and also not even shown in the output. The “highest ranked” of the
set is the one that is considered.

	-f --followlinks / -F --no-followlinks / -@ --see-symlinks (default)

	-f will always follow symbolic links. If file system loops occurs
rmlint will detect this. If -F is specified, symbolic links will be
ignored completely, if -@ is specified, rmlint will see symlinks and
treats them like small files with the path to their target in them. The
latter is the default behaviour, since it is a sensible default for
--merge-directories.

	-x --no-crossdev / -X --crossdev (default)

	Stay always on the same device (-x), or allow crossing mountpoints
(-X). The latter is the default.

	-r --hidden / -R --no-hidden (default) / --partial-hidden

	Also traverse hidden directories? This is often not a good idea, since
directories like .git/ would be investigated, possibly leading to the
deletion of internal git files which in turn break a repository.
With --partial-hidden hidden files and folders are only considered if
they’re inside duplicate directories (see --merge-directories) and will
be deleted as part of it.

	-b --match-basename

	Only consider those files as dupes that have the same basename. See also
man 1 basename. The comparison of the basenames is case-insensitive.

	-B --unmatched-basename

	Only consider those files as dupes that do not share the same basename.
See also man 1 basename. The comparison of the basenames is case-insensitive.

	-e --match-with-extension / -E --no-match-with-extension (default)

	Only consider those files as dupes that have the same file extension. For
example two photos would only match if they are a .png. The extension is
compared case-insensitive, so .PNG is the same as .png.

	-i --match-without-extension / -I --no-match-without-extension (default)

	Only consider those files as dupes that have the same basename minus the file
extension. For example: banana.png and Banana.jpeg would be considered,
while apple.png and peach.png won’t. The comparison is case-insensitive.

	-n --newer-than-stamp=<timestamp_filename> / -N --newer-than=<iso8601_timestamp_or_unix_timestamp>

	Only consider files (and their size siblings for duplicates) newer than a
certain modification time (mtime). The age barrier may be given as
seconds since the epoch or as ISO8601-Timestamp like
2014-09-08T00:12:32+0200.

-n expects a file from which it can read the timestamp. After
rmlint run, the file will be updated with the current timestamp.
If the file does not initially exist, no filtering is done but the stampfile
is still written.

-N, in contrast, takes the timestamp directly and will not write anything.

Note that rmlint will find duplicates newer than timestamp, even if
the original is older. If you want only find duplicates where both
original and duplicate are newer than timestamp you can use
find(1):

	find -mtime -1 -print0 | rmlint -0 # pass all files younger than a day to rmlint

Note: you can make rmlint write out a compatible timestamp with:

	-O stamp:stdout # Write a seconds-since-epoch timestamp to stdout on finish.

	-O stamp:stdout -c stamp:iso8601 # Same, but write as ISO8601.

Original Detection Options

	-k --keep-all-tagged / -K --keep-all-untagged

	Don’t delete any duplicates that are in tagged paths (-k) or that are
in non-tagged paths (-K).
(Tagged paths are those that were named after //).

	-m --must-match-tagged / -M --must-match-untagged

	Only look for duplicates of which at least one is in one of the tagged paths.
(Paths that were named after //).

Note that the combinations of -kM and -Km are prohibited by rmlint.
See https://github.com/sahib/rmlint/issues/244 for more information.

	-S --rank-by=criteria (default: pOma)

	Sort the files in a group of duplicates into originals and duplicates by
one or more criteria. Each criteria is defined by a single letter (except
r and x which expect a regex pattern after the letter). Multiple
criteria may be given as string, where the first criteria is the most
important. If one criteria cannot decide between original and duplicate the
next one is tried.

	m: keep lowest mtime (oldest) M: keep highest mtime (newest)

	a: keep first alphabetically A: keep last alphabetically

	p: keep first named path P: keep last named path

	d: keep path with lowest depth D: keep path with highest depth

	l: keep path with shortest basename L: keep path with longest basename

	r: keep paths matching regex R: keep path not matching regex

	x: keep basenames matching regex X: keep basenames not matching regex

	h: keep file with lowest hardlink count H: keep file with highest hardlink count

	o: keep file with lowest number of hardlinks outside of the paths traversed by rmlint.

	O: keep file with highest number of hardlinks outside of the paths traversed by rmlint.

Alphabetical sort will only use the basename of the file and ignore its case.
One can have multiple criteria, e.g.: -S am will choose first alphabetically; if tied then by mtime.
Note: original path criteria (specified using //) will always take first priority over -S options.

For more fine grained control, it is possible to give a regular expression
to sort by. This can be useful when you know a common fact that identifies
original paths (like a path component being src or a certain file ending).

To use the regular expression you simply enclose it in the criteria string
by adding <REGULAR_EXPRESSION> after specifying r or x. Example: -S
'r<.*\.bak$>' makes all files that have a .bak suffix original files.

Warning: When using r or x, try to make your regex to be as specific
as possible! Good practice includes adding a $ anchor at the end of the regex.

Tips:

	l is useful for files like file.mp3 vs file.1.mp3 or file.mp3.bak.

	a can be used as last criteria to assert a defined order.

	o/O and h/H are only useful if there any hardlinks in the traversed path.

	o/O takes the number of hardlinks outside the traversed paths (and
thereby minimizes/maximizes the overall number of hardlinks). h/H in
contrast only takes the number of hardlinks inside of the traversed
paths. When hardlinking files, one would like to link to the original
file with the highest outer link count (O) in order to maximise the
space cleanup. H does not maximise the space cleanup, it just selects
the file with the highest total hardlink count. You usually want to specify O.

	pOma is the default since p ensures that first given paths rank as originals,
O ensures that hardlinks are handled well, m ensures that the oldest file is the
original and a simply ensures a defined ordering if no other criteria applies.

Caching

	--replay

	Read an existing json file and re-output it. When --replay is given,
rmlint does no input/output on the filesystem, even if you pass
additional paths. The paths you pass will be used for filtering the
--replay output.

This is very useful if you want to reformat, refilter or resort the output
you got from a previous run. Usage is simple: Just pass --replay on the
second run, with other changed to the new formatters or filters. Pass the
.json files of the previous runs additionally to the paths you ran
rmlint on. You can also merge several previous runs by specifying more
than one .json file, in this case it will merge all files given and
output them as one big run.

If you want to view only the duplicates of certain subdirectories, just
pass them on the commandline as usual.

The usage of // has the same effect as in a normal run. It can be used
to prefer one .json file over another. However note that running
rmlint in --replay mode includes no real disk traversal, i.e. only
duplicates from previous runs are printed. Therefore specifying new paths
will simply have no effect. As a security measure, --replay will ignore
files whose mtime changed in the meantime (i.e. mtime in the .json file
differs from the current one). These files might have been modified and
are silently ignored.

By design, some options will not have any effect. Those are:

	--followlinks

	--algorithm

	--paranoid

	--clamp-low

	--hardlinked

	--write-unfinished

	… and all other caching options below.

NOTE: In --replay mode, a new .json file will be written to
rmlint.replay.json in order to avoid overwriting rmlint.json.

	-C --xattr

	Shortcut for --xattr-read, --xattr-write, --write-unfinished.
This will write a checksum and a timestamp to the extended attributes of each
file that rmlint hashed. This speeds up subsequent runs on the same data set.
Please note that not all filesystems may support extended attributes and you
need write support to use this feature.

See the individual options below for more details and some examples.

	--xattr-read / --xattr-write / --xattr-clear

	Read or write cached checksums from the extended file attributes.
This feature can be used to speed up consecutive runs.

CAUTION: This could potentially lead to false positives if file
contents are somehow modified without changing the file modification time.
rmlint uses the mtime to determine the modification timestamp if a checksum
is outdated. This is not a problem if you use the clone or reflink
operation on a filesystem like btrfs. There an outdated checksum entry
would simply lead to some duplicate work done in the kernel but would do no
harm otherwise.

NOTE: Many tools do not support extended file attributes properly,
resulting in a loss of the information when copying the file or editing it.

NOTE: You can specify --xattr-write and --xattr-read at the same time.
This will read from existing checksums at the start of the run and update all hashed
files at the end.

Usage example:

$ rmlint large_file_cluster/ -U --xattr-write # first run should be slow.
$ rmlint large_file_cluster/ --xattr-read # second run should be faster.

Or do the same in just one run:
$ rmlint large_file_cluster/ --xattr

	-U --write-unfinished

	Include files in output that have not been hashed fully, i.e. files that do
not appear to have a duplicate. Note that this will not include all files
that rmlint traversed, but only the files that were chosen to be hashed.

This is mainly useful in conjunction with --xattr-write/read. When
re-running rmlint on a large dataset this can greatly speed up a re-run in
some cases. Please refer to --xattr-read for an example.

If you want to output unique files, please look into the uniques output formatter.

Rarely used, miscellaneous options

	-t --threads=N (default: 16)

	The number of threads to use during file tree traversal and hashing.
rmlint probably knows better than you how to set this value, so just
leave it as it is. Setting it to 1 will also not make rmlint
a single threaded program.

	-u --limit-mem=size

	Apply a maximum number of memory to use for hashing and –paranoid.
The total number of memory might still exceed this limit though, especially
when setting it very low. In general rmlint will however consume about this
amount of memory plus a more or less constant extra amount that depends on the
data you are scanning.

The size-description has the same format as for –size, therefore you
can do something like this (use this if you have 1GB of memory available):

$ rmlint -u 512M # Limit paranoid mem usage to 512 MB

	-q --clamp-low=[fac.tor|percent%|offset] (default: 0) / -Q --clamp-top=[fac.tor|percent%|offset] (default: 1.0)

	The argument can be either passed as factor (a number with a . in it),
a percent value (suffixed by %) or as absolute number or size spec, like in --size.

Only look at the content of files in the range of from low to
(including) high. This means, if the range is less than -q 0% to
-Q 100%, than only partial duplicates are searched. If the file size is
less than the clamp limits, the file is ignored during traversing. Be careful when
using this function, you can easily get dangerous results for small files.

This is useful in a few cases where a file consists of a constant sized
header or footer. With this option you can just compare the data in between.
Also it might be useful for approximate comparison where it suffices when
the file is the same in the middle part.

Example:

$ rmlint -q 10% -Q 512M # Only read the last 90% of a file, but read at max. 512MB

	-Z --mtime-window=T (default: -1)

	Only consider those files as duplicates that have the same content and
the same modification time (mtime) within a certain window of T seconds.
If T is 0, both files need to have the same mtime. For T=1 they may
differ one second and so on. If the window size is negative, the mtime of
duplicates will not be considered. T may be a floating point number.

However, with three (or more) files, the mtime difference between two
duplicates can be bigger than the mtime window T, i.e. several files may
be chained together by the window. Example: If T is 1, the four files
fooA (mtime: 00:00:00), fooB (00:00:01), fooC (00:00:02), fooD (00:00:03)
would all belong to the same duplicate group, although the mtime of fooA
and fooD differs by 3 seconds.

	--with-fiemap (default) / --without-fiemap

	Enable or disable reading the file extents on rotational disk in order to
optimize disk access patterns. If this feature is not available, it is
disabled automatically.

FORMATTERS

	csv: Output all found lint as comma-separated-value list.

Available options:

	no_header: Do not write a first line describing the column headers.

	unique: Include unique files in the output.

	
	sh: Output all found lint as shell script This formatter is activated

	as default.

available options:

	cmd: Specify a user defined command to run on duplicates.
The command can be any valid /bin/sh-expression. The duplicate
path and original path can be accessed via "$1" and "$2".
The command will be written to the user_command function in the
sh-file produced by rmlint.

	handler Define a comma separated list of handlers to try on duplicate
files in that given order until one handler succeeds. Handlers are just the
name of a way of getting rid of the file and can be any of the following:

	clone: For reflink-capable filesystems only. Try to clone both files with the
FIDEDUPERANGE ioctl(3p) (or BTRFS_IOC_FILE_EXTENT_SAME on older kernels).
This will free up duplicate extents. Needs at least kernel 4.2.
Use this option when you only have read-only access to a btrfs filesystem but still
want to deduplicate it. This is usually the case for snapshots.

	reflink: Try to reflink the duplicate file to the original. See also
--reflink in man 1 cp. Fails if the filesystem does not support
it.

	hardlink: Replace the duplicate file with a hardlink to the original
file. The resulting files will have the same inode number. Fails if both
files are not on the same partition. You can use ls -i to show the
inode number of a file and find -samefile <path> to find all
hardlinks for a certain file.

	symlink: Tries to replace the duplicate file with a symbolic link to
the original. This handler never fails.

	remove: Remove the file using rm -rf. (-r for duplicate dirs).
This handler never fails.

	usercmd: Use the provided user defined command (-c
sh:cmd=something). This handler never fails.

Default is remove.

	link: Shortcut for -c sh:handler=clone,reflink,hardlink,symlink.
Use this if you are on a reflink-capable system.

	hardlink: Shortcut for -c sh:handler=hardlink,symlink.
Use this if you want to hardlink files, but want to fallback
for duplicates that lie on different devices.

	symlink: Shortcut for -c sh:handler=symlink.
Use this as last straw.

	json: Print a JSON-formatted dump of all found reports. Outputs all lint
as a json document. The document is a list of dictionaries, where the first
and last element is the header and the footer. Everything between are
data-dictionaries.

Available options:

	unique: Include unique files in the output.

	no_header=[true|false]: Print the header with metadata (default: true)

	no_footer=[true|false]: Print the footer with statistics (default: true)

	oneline=[true|false]: Print one json document per line (default: false)
This is useful if you plan to parse the output line-by-line, e.g. while
rmlint is sill running.

This formatter is extremely useful if you’re in need of scripting more complex behaviour,
that is not directly possible with rmlint’s built-in options. A very handy tool here is jq.
Here is an example to output all original files directly from a rmlint run:

$ rmlint -o | json jq -r '.[1:-1][] | select(.is_original) | .path'

	py: Outputs a python script and a JSON document, just like the json formatter.
The JSON document is written to .rmlint.json, executing the script will
make it read from there. This formatter is mostly intended for complex use-cases
where the lint needs special handling that you define in the python script.
Therefore the python script can be modified to do things standard rmlint
is not able to do easily.

	uniques: Outputs all unique paths found during the run, one path per line.
This is often useful for scripting purposes.

Available options:

	print0: Do not put newlines between paths but zero bytes.

	stamp:

Outputs a timestamp of the time rmlint was run.
See also the --newer-than and --newer-than-stamp file option.

Available options:

	iso8601=[true|false]: Write an ISO8601 formatted timestamps or seconds
since epoch?

	progressbar: Shows a progressbar. This is meant for use with stdout or
stderr [default].

See also: -g (--progress) for a convenience shortcut option.

Available options:

	update_interval=number: Number of milliseconds to wait between updates.
Higher values use less resources (default 50).

	ascii: Do not attempt to use unicode characters, which might not be
supported by some terminals.

	fancy: Use a more fancy style for the progressbar.

	pretty: Shows all found items in realtime nicely colored. This formatter
is activated as default.

	summary: Shows counts of files and their respective size after the run.
Also list all written output files.

	fdupes: Prints an output similar to the popular duplicate finder
fdupes(1). At first a progressbar is printed on stderr. Afterwards the
found files are printed on stdout; each set of duplicates gets printed as a
block separated by newlines. Originals are highlighted in green. At the bottom
a summary is printed on stderr. This is mostly useful for scripts that were
set up for parsing fdupes output. We recommend the json formatter for every other
scripting purpose.

Available options:

	omitfirst: Same as the -f / --omitfirst option in fdupes(1). Omits the
first line of each set of duplicates (i.e. the original file.

	sameline: Same as the -1 / --sameline option in fdupes(1). Does not
print newlines between files, only a space. Newlines are printed only between
sets of duplicates.

OTHER STAND-ALONE COMMANDS

	rmlint --gui

	Start the optional graphical frontend to rmlint called Shredder.

This will only work when Shredder and its dependencies were installed.
See also: http://rmlint.readthedocs.org/en/latest/gui.html

The gui has its own set of options, see --gui --help for a list. These
should be placed at the end, ie rmlint --gui [options] when calling
it from commandline.

	rmlint --hash [paths...]

	Make rmlint work as a multi-threaded file hash utility, similar to the
popular md5sum or sha1sum utilities, but faster and with more algorithms.
A set of paths given on the commandline or from stdin is hashed using one
of the available hash algorithms. Use rmlint --hash -h to see options.

	rmlint --equal [paths...]

	Check if the paths given on the commandline all have equal content. If all
paths are equal and no other error happened, rmlint will exit with an exit
code 0. Otherwise it will exit with a nonzero exit code. All other options
can be used as normal, but note that no other formatters (sh, csv
etc.) will be executed by default. At least two paths need to be passed.

Note: This even works for directories and also in combination with paranoid
mode (pass -pp for byte comparison); remember that rmlint does not care
about the layout of the directory, but only about the content of the files
in it. At least two paths need to be given to the commandline.

By default this will use hashing to compare the files and/or directories.

	rmlint --dedupe [-r] [-v|-V] <src> <dest>

	If the filesystem supports files sharing physical storage between multiple
files, and if src and dest have same content, this command makes the
data in the src file appear the dest file by sharing the
underlying storage.

This command is similar to cp --reflink=always <src> <dest>
except that it (a) checks that src and dest have identical data, and
it makes no changes to dest’s metadata.

Running with -r option will enable deduplication of read-only [btrfs]
snapshots (requires root).

	rmlint --is-reflink [-v|-V] <file1> <file2>

	Tests whether file1 and file2 are reflinks (reference same data).
This command makes rmlint exit with one of the following exit codes:

	0: files are reflinks

	1: files are not reflinks

	3: not a regular file

	4: file sizes differ

	5: fiemaps can’t be read

	6: file1 and file2 are the same path

	7: file1 and file2 are the same file under different mountpoints

	8: files are hardlinks

	9: files are symlinks

	10: files are not on same device

	11: other error encountered

EXAMPLES

This is a collection of common use cases and other tricks:

	Check the current working directory for duplicates.

$ rmlint

	Show a progressbar:

$ rmlint -g

	Quick re-run on large datasets using different ranking criteria on second run:

$ rmlint large_dir/ # First run; writes rmlint.json

$ rmlint --replay rmlint.json large_dir -S MaD

	Merge together previous runs, but prefer the originals to be from b.json and
make sure that no files are deleted from b.json:

$ rmlint --replay a.json // b.json -k

	Search only for duplicates and duplicate directories

$ rmlint -T "df,dd" .

	Compare files byte-by-byte in current directory:

$ rmlint -pp .

	Find duplicates with same basename (excluding extension):

$ rmlint -e

	Do more complex traversal using find(1).

$ find /usr/lib -iname '*.so' -type f | rmlint - # find all duplicate .so files

$ find /usr/lib -iname '*.so' -type f -print0 | rmlint -0 # as above but handles filenames with newline character in them

$ find ~/pics -iname '*.png' | ./rmlint - # compare png files only

	Limit file size range to investigate:

$ rmlint -s 2GB # Find everything >= 2GB

$ rmlint -s 0-2GB # Find everything < 2GB

	Only find writable and executable files:

$ rmlint --perms wx

	Reflink if possible, else hardlink duplicates to original if possible, else replace
duplicate with a symbolic link:

$ rmlint -c sh:link

	Inject user-defined command into shell script output:

$ rmlint -o sh -c sh:cmd='echo "original:" "$2" "is the same as" "$1"'

	Use shred to overwrite the contents of a file fully:

$ rmlint -c 'sh:cmd=shred -un 10 "$1"'

	Use data as master directory. Find only duplicates in backup that are
also in data. Do not delete any files in data:

$ rmlint backup // data --keep-all-tagged --must-match-tagged

	Compare if the directories a b c and are equal

$ rmlint --equal a b c && echo "Files are equal" || echo "Files are not equal"

	Test if two files are reflinks

$ rmlint --is-reflink a b && echo "Files are reflinks" || echo "Files are not reflinks".

	Cache calculated checksums for next run. The checksums will be written to the extended file attributes:

$ rmlint --xattr

	Produce a list of unique files in a folder:

$ rmlint -o uniques

	Produce a list of files that are unique, including original files (“one of each”):

$ rmlint t -o json -o uniques:unique_files | jq -r '.[1:-1][] | select(.is_original) | .path' | sort > original_files
$ cat unique_files original_files

	Sort files by a user-defined regular expression

Always keep files with ABC or DEF in their basename,
dismiss all duplicates with tmp, temp or cache in their names
and if none of those are applicable, keep the oldest files instead.
$./rmlint -S 'x<.*(ABC|DEF).*>X<.*(tmp|temp|cache).*>m' /some/path

	Sort files by adding priorities to several user-defined regular expressions:

Unlike the previous snippet, this one uses priorities:
Always keep files in ABC, DEF, GHI by following that particular order of
importance (ABC has a top priority), dismiss all duplicates with
tmp, temp, cache in their paths and if none of those are applicable,
keep the oldest files instead.
$ rmlint -S 'r<.*ABC.*>r<.*DEF.*>r<.*GHI.*>R<.*(tmp|temp|cache).*>m' /some/path

PROBLEMS

	False Positives: Depending on the options you use, there is a very slight risk
of false positives (files that are erroneously detected as duplicate).
The default hash function (blake2b) is very safe but in theory it is possible for
two files to have then same hash. If you had 10^73 different files, all the same
size, then the chance of a false positive is still less than 1 in a billion.
If you’re concerned just use the --paranoid (-pp)
option. This will compare all the files byte-by-byte and is not much slower than
blake2b (it may even be faster), although it is a lot more memory-hungry.

	File modification during or after rmlint run: It is possible that a file
that rmlint recognized as duplicate is modified afterwards, resulting in
a different file. If you use the rmlint-generated shell script to delete
the duplicates, you can run it with the -p option to do a full re-check
of the duplicate against the original before it deletes the file. When using
-c sh:hardlink or -c sh:symlink care should be taken that
a modification of one file will now result in a modification of all files.
This is not the case for -c sh:reflink or -c sh:clone. Use -c
sh:link to minimise this risk.

SEE ALSO

Reading the manpages o these tools might help working with rmlint:

	find(1)

	rm(1)

	cp(1)

Extended documentation and an in-depth tutorial can be found at:

	http://rmlint.rtfd.org

BUGS

If you found a bug, have a feature requests or want to say something nice, please
visit https://github.com/sahib/rmlint/issues.

Please make sure to describe your problem in detail. Always include the version
of rmlint (--version). If you experienced a crash, please include
at least one of the following information with a debug build of rmlint:

	gdb --ex run -ex bt --args rmlint -vvv [your_options]

	valgrind --leak-check=no rmlint -vvv [your_options]

You can build a debug build of rmlint like this:

	git clone git@github.com:sahib/rmlint.git

	cd rmlint

	scons GDB=1 DEBUG=1

	sudo scons install # Optional

LICENSE

rmlint is licensed under the terms of the GPLv3.

See the COPYRIGHT file that came with the source for more information.

PROGRAM AUTHORS

rmlint was written by:

	Christopher <sahib> Pahl 2010-2017 (https://github.com/sahib)

	Daniel <SeeSpotRun> T. 2014-2017 (https://github.com/SeeSpotRun)

Also see the http://rmlint.rtfd.org for other people that helped us.

If you consider a donation you can use Flattr or buy us a beer if we meet:

https://flattr.com/thing/302682/libglyr

 Index

Index

 Testsuite

Testsuite

rmlint has a not yet complete but quite powerful testsuite. It is not
complete yet (and probably never will), but it’s already a valuable boost of
confidence in rmlint's correctness.

The tests are based on nosetest and are written in python>=3.0.
Every testcase just runs the (previously built) rmlint binary a
and parses its json output. So they are technically blackbox-tests.

On every commit, those tests are additionally run on TravisCI [https://travis-ci.org/sahib/rmlint].

Control Variables

The behaviour of the testsuite can be controlled by certain environment
variables which are:

	RM_TS_DIR: Testdir to create files in. Can be very large with some tests,
sometimes tmpfs might therefore slow down your computer. By default
/tmp will be used.

	RM_TS_USE_VALGRIND: Run each test inside of valgrind’s memcheck. (slow)

	RM_TS_CHECK_LEAKS: Fail test if valgrind indicates (definite) memory leak.

	RM_TS_USE_GDB: Run tests inside of gdb. Fatal signals will trigger a
backtrace.

	RM_TS_PEDANTIC: Run each test several times with different optimization options
and check for errors between the runs. (slow).

	RM_TS_SLEEP: Waits a long time before executing a command. Useful for
starting the testcase and manually running rmlint on the priorly generated
testdir.

	RM_TS_PRINT_CMD: Print the command that is currently run.

	RM_TS_KEEP_TESTDIR: If a test failed, keep the test files.

Additionally slow tests can be omitted with by appending -a '!slow' to
the commandline. More information on this syntax can be found on the nosetest
documentation [http://nose.readthedocs.org/en/latest/plugins/attrib.html].

Before each release we call the testsuite (at least) like this:

$ sudo RM_TS_USE_VALGRIND=1 RM_TS_PRINT_CMD=1 RM_TS_PEDANTIC=1 nosetests-3.4 -s -a '!slow !known_issue'

The sudo here is there for executing some tests that need root access (like
the creating of bad user and group ids). Most tests will work without.

Coverage

To see which functions need more testcases we use gcov to detect which lines
were executed (and how often) by the testsuite. Here’s a short quickstart using
lcov:

$ CFLAGS="-fprofile-arcs -ftest-coverage" LDFLAGS="-fprofile-arcs -ftest-coverage" scons -j4 DEBUG=1
$ sudo RM_TS_USE_VALGRIND=1 RM_TS_PRINT_CMD=1 RM_TS_PEDANTIC=1 nosetests-3.4 -s -a '!slow !known_issue'
$ lcov --capture --directory . --output-file coverage.info
$ genhtml coverage.info --output-directory out

The coverage results are updated from time to time here:

http://sahib.github.io/rmlint/gcov/index.html

Structure

tests
├── test_formatters # Tests for output formatters (like sh or json)
├── test_options # Tests for normal options like --merge-directories etc.
├── test_types # Tests for all lint types rmlint can find
└── utils.py # Common utilities shared among tests.

Templates

A template for a testcase looks like this:

from nose import with_setup
from tests.utils import *

@with_setup(usual_setup_func, usual_teardown_func)
def test_basic():
 create_file('xxx', 'a')
 create_file('xxx', 'b')

 head, *data, footer = run_rmlint('-a city -S a')

 assert footer['duplicate_sets'] == 1
 assert footer['total_lint_size'] == 3
 assert footer['total_files'] == 2
 assert footer['duplicates'] == 1

Rules

	Test should be able to run as normal user.

	If that’s not possible, check at the beginning of the testcase with this:

if not runs_as_root():
 return

	Regressions in rmlint should get their own testcase so they do not
appear again.

	Slow tests can be marked with a slow attribute:

from nose.plugins.attrib import attr

@attr('slow')
@with_setup(usual_setup_func, usual_teardown_func)
def test_debian_support():
 assert random.choice([True, False]):

	Unresolved issues can be marked with known_issue attribute to avoid failing automated travis testing

_static/up-pressed.png

_static/up.png

_images/gui_editor.png
#Ubin/sh]
This file was autowritten by rmlint |
rmiint was exectited from: Ampishredder-w7ikn2al |
#Your command line was: rmiint ~no-with-color -T duplicates ~see-symlinks —partial-hidden -hardiinked ~crossdev ~size OM-17179869184M —algorithm

GROUP="sahib"

#Settotrueon-n
DO_DRY_RUI

#Settotrue on-p
DO_PARANOID_CHECK=

R
GENERAL LINT HANDLER FUNCTIONS
T T

Review the script on the left!
When done, click the “Run Script™ button below.

‘echo Deleting empty file: *$1"
if[-2"SDO_DRY_RUN" I then
m-fF$1"
fi
3

TR mptyir() {
‘echo ‘Deleting empry directory: "$1"
if[-2"$DO_DRY_RUN" I then
rmdir 51"

R @ @ Entsperren

_images/gui_locations.png
E]
]

Shredder
Click locations to scan.

Personal directory

Iomelsaib

Cache and logs

Iar

GefachrtenShare.

Inomelsahib/Dropbox/GefachrtenShare

wallpaper

Iome/sahib/Bider/wallpaper

abs

Iarlabs

Downloads

Ihomelsahib/Downloads

Aufnahmen

BEOPRREE

12168

3868

624.4MB

324MB

49.1M8

1168

152KB

T Remove from list

2 directories — 2 of them preferred

_images/flattr-badge-large.png

_images/gui_runner.png
Shredder
Finshed scanning

()]

core
v systemd

[X splash-arch.bmp

L v systemdinstall

v gummiboot

L v splash-arch.bmp

v libsasl

[X CVE-2013-4122 patch

[~ X 0030-dont_use_la_files_for_opening_plugins.patch
[X cyrus-sasl-sqLpatch

[~ X 0025_1d_as_needed patch

[~ X 0026_drop_krbSsupport_dependency patch

[~ X 0010_maintainer_mode.patch

[X cyrus-sasl-2.1.22-qa.patch

[X cyrus-sasl-2.1.22-as-needed patch

[X 0011_saslauthd_ac_prog_libtool.patch

[X cyrus-sasl-2.1.26-size_t patch

[X saslauthd service

Size -
13M8
13M8

790.0KB
3749KB
369.4KB
55KB
369.4KB
369.4KB
12.8k8
37KB
33KB
14KB
11KB
6308
5858
5258
4638
4268
3788
2398

Count Changed
1345 Objects 1.6 months ago
1345 Objects 1.6 months ago

96 Objects 1.6 months ago
2 Objects 1.6 months ago!
2Twins 1.6 months ago!
2Twins 1.6 months ago!

1 Object
2Twins 1.6 months ago!
13 Objects 1.6 months ago
2Twins 1.6 months ago!
2Twins 1.6 months ago!
2Twins 1.6 months ago!
2Twins 1.6 months ago!
2Twins 1.6 months ago!
2Twins 1.6 months ago!
2Twins 1.6 months ago!
2Twins 1.6 months ago!
2Twins 1.6 months ago!
2Twins 1.6 months ago!
2Twins 1.6 months ago!

_images/gui_settings.png
> || i Reset to defaults Sladday
Configure how duplcates are seche

Computation:

Must match tagged No restriction
Duplicates must have twins in tagged diectories e

Keep all tagged Keep all ta

Keepall fles that i in tagged directories

Hash algorithm .

Which hash algorithm to use

General:

Symbolic link handling
What to o with symbolic links?

Report duplicate hardlinks

Duplicate fies might have hardlnked twins.

Traverse:

Find hidden files and directories. Use for duplicate directories only

Hidden fles and directories begin with a ».¢.

Path limitations. No limitation
Only find twins with a certain imitation Sosmisten

Cross mountpoints
Traverse over mount borders?

Traversal depth

»0e i only the current directory's fles

nav.xhtml

 Table of Contents

 		
 User manual

 		
 Installation

 		
 Dependencies

 		
 Hard dependencies:

 		
 Soft dependencies:

 		
 Build dependencies:

 		
 Compilation

 		
 Troubleshooting

 		
 Gentle Guide to rmlint

 		
 Beginner Examples

 		
 Filtering input files

 		
 Limit files by size using –size

 		
 Limit duplicate matching according to basename

 		
 Limit files by their modification time

 		
 Outputs & Formatters

 		
 Paranoia mode

 		
 Original detection / selection

 		
 Flagging original directories

 		
 Finding duplicate directories

 		
 Replaying results

 		
 Miscellaneous options

 		
 Scripting

 		
 Copying unique files

 		
 Filter by regular expressions

 		
 Graphical user interface

 		
 Installation

 		
 Usage

 		
 Developers

 		
 Location view

 		
 Runner view

 		
 Editor view

 		
 Settings view

 		
 Design

 		
 Internal

 		
 Cautions (or why it’s hard to write a dupefinder)

 		
 Good Practice when Deleting Duplicates

 		
 Backup your data

 		
 Measure twice, cut once

 		
 Beware of unusual filename characters

 		
 Consider safe removal options

 		
 Attributes of a Robust Duplicate Finder

 		
 Traversal Robustness

 		
 Collision Robustness

 		
 Unusual Characters Robustness

 		
 “Seek Thrash” Robustness

 		
 Memory Usage Robustness

 		
 Frequently Asked Questions

 		
 rmlint finds more/less dupes than tool X!

 		
 Can you implement feature X?

 		
 I forgot to add some options before running on a large dataset. Do I need to re-run it?

 		
 I have a very large number of files and I run out of memory and patience.

 		
 Developer’s Guide

 		
 Bugs

 		
 Philosophy

 		
 Making contributions

 		
 Testsuite

 		
 Control Variables

 		
 Coverage

 		
 Structure

 		
 Templates

 		
 Rules

 		
 Buildsystem Helpers

 		
 Environment Variables

 		
 Variables

 		
 Arguments

 		
 Notable targets

 		
 Sourcecode layout

 		
 Hashfunctions

 		
 Optimizations

 		
 Obvious ones

 		
 Subtle ones

 		
 Insane ones

 		
 Translating rmlint

 		
 Adding new languages

 		
 Updating existing languages

 		
 Marking new strings for translations

 		
 Benchmarks

 		
 User benchmarks

 		
 Online-manpage of rmlint(1)

 		
 find duplicate files and other space waste efficiently

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 FORMATTERS

 		
 OTHER STAND-ALONE COMMANDS

 		
 EXAMPLES

 		
 PROBLEMS

 		
 SEE ALSO

 		
 BUGS

 		
 LICENSE

 		
 PROGRAM AUTHORS

_images/screenshot.png
$ rmlint -g .
Traversing (945 usable Files / 36 + 19 ignored files / folders)

Preprocessing (reduces files to 276 / found 81 other Llint)

Matching (145 dupes of 44 originals; © B to scan in 6 files)

== In total 945 files, whereof 145 are duplicates in 44 groups.
This equals 1,91 ME of duplicates which could be removed.
—— 81 other suspicious iten(s) found, which may vary in size

Wrote a json file to: /home/sahib/rmlint/rnlint.json
Wrote a sh File to: /home/sahib/rmlint/rmlint.sh

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/gui_editor.png
#Ubin/sh]
This file was autowritten by rmlint |
rmiint was exectited from: Ampishredder-w7ikn2al |
#Your command line was: rmiint ~no-with-color -T duplicates ~see-symlinks —partial-hidden -hardiinked ~crossdev ~size OM-17179869184M —algorithm

GROUP="sahib"

#Settotrueon-n
DO_DRY_RUI

#Settotrue on-p
DO_PARANOID_CHECK=

R
GENERAL LINT HANDLER FUNCTIONS
T T

Review the script on the left!
When done, click the “Run Script™ button below.

‘echo Deleting empty file: *$1"
if[-2"SDO_DRY_RUN" I then
m-fF$1"
fi
3

TR mptyir() {
‘echo ‘Deleting empry directory: "$1"
if[-2"$DO_DRY_RUN" I then
rmdir 51"

R @ @ Entsperren

_static/gui_locations.png
E]
]

Shredder
Click locations to scan.

Personal directory

Iomelsaib

Cache and logs

Iar

GefachrtenShare.

Inomelsahib/Dropbox/GefachrtenShare

wallpaper

Iome/sahib/Bider/wallpaper

abs

Iarlabs

Downloads

Ihomelsahib/Downloads

Aufnahmen

BEOPRREE

12168

3868

624.4MB

324MB

49.1M8

1168

152KB

T Remove from list

2 directories — 2 of them preferred

_static/file.png

_static/gui_settings.png
> || i Reset to defaults Sladday
Configure how duplcates are seche

Computation:

Must match tagged No restriction
Duplicates must have twins in tagged diectories e

Keep all tagged Keep all ta

Keepall fles that i in tagged directories

Hash algorithm .

Which hash algorithm to use

General:

Symbolic link handling
What to o with symbolic links?

Report duplicate hardlinks

Duplicate fies might have hardlnked twins.

Traverse:

Find hidden files and directories. Use for duplicate directories only

Hidden fles and directories begin with a ».¢.

Path limitations. No limitation
Only find twins with a certain imitation Sosmisten

Cross mountpoints
Traverse over mount borders?

Traversal depth

»0e i only the current directory's fles

_static/logo.png
[rm]lint

_static/gui_runner.png
Shredder
Finshed scanning

()]

core
v systemd

[X splash-arch.bmp

L v systemdinstall

v gummiboot

L v splash-arch.bmp

v libsasl

[X CVE-2013-4122 patch

[~ X 0030-dont_use_la_files_for_opening_plugins.patch
[X cyrus-sasl-sqLpatch

[~ X 0025_1d_as_needed patch

[~ X 0026_drop_krbSsupport_dependency patch

[~ X 0010_maintainer_mode.patch

[X cyrus-sasl-2.1.22-qa.patch

[X cyrus-sasl-2.1.22-as-needed patch

[X 0011_saslauthd_ac_prog_libtool.patch

[X cyrus-sasl-2.1.26-size_t patch

[X saslauthd service

Size -
13M8
13M8

790.0KB
3749KB
369.4KB
55KB
369.4KB
369.4KB
12.8k8
37KB
33KB
14KB
11KB
6308
5858
5258
4638
4268
3788
2398

Count Changed
1345 Objects 1.6 months ago
1345 Objects 1.6 months ago

96 Objects 1.6 months ago
2 Objects 1.6 months ago!
2Twins 1.6 months ago!
2Twi