
rmlint documentation
Release

May 01, 2018

Contents

1 Installation 3
1.1 Dependencies . 3
1.2 Compilation . 4

2 Tutorial 5
2.1 Beginner Examples . 5
2.2 Filtering . 6
2.3 Outputs . 7
2.4 Paranoia . 10
2.5 Original detection . 11
2.6 Finding duplicate directories . 12
2.7 Misc options . 13

3 Frequently Asked Questions 15
3.1 rmlint finds more/less dupes than tool X! . 15
3.2 Can you implement feature X? . 15

4 Informative reference 17
4.1 Developer’s Guide . 17
4.2 Translating rmlint . 20
4.3 rmlint . 21

5 Authors 29

6 License 31

7 Donations 33

i

ii

rmlint documentation, Release

rmlint finds space waste and other broken things on your filesystem and offers to remove it. It is able to find:

• Duplicate files & directories.
• Nonstripped Binaries
• Broken symlinks.
• Empty files.
• Recursive empty directories.
• Files with broken user or group id.

Key Features:

• Extremely fast.
• Exchangeable hashing algorithm.
• Numerous output formats.
• Easy commandline interface.
• Possibility to update files with newer mtime.
• Many options for originaldetection.

Although rmlint is easy to use, you might want to read these chapters first. They show you the basic principles and
most of the advanced options:

Contents 1

https://travis-ci.org/sahib/rmlint
https://github.com/sahib/rmlint/issues
https://github.com/sahib/rmlint/releases
https://www.gnu.org/licenses/quick-guide-gplv3.html.en
https://www.codacy.com/public/sahib/rmlint/dashboard

rmlint documentation, Release

2 Contents

CHAPTER 1

Installation

Many major Linux distribution might already package rmlint – but watch out for the version. This manual describes
the rewrite of rmlint (i.e. version ≥ 2). Old versions before this might contain bugs, have design flaws or might eat
your hamster. We recommend using the newest version.

If there is no package yet or you want to try a development version, you gonna need to compile rmlint from source.

1.1 Dependencies

1.1.1 Hard dependencies:

• glib ≥ 2.32 (general C Utility Library)

• libblkid (detecting mountpoints)

• libelf (nonstripped binary detection)

1.1.2 Build dependencies:

• git (version control)

• scons (build system)

• sphinx>=3.0 (manpage/documentation generation)

Here’s a list of readily prepared commands for known distributions:

• Fedora:

$ yum -y install git scons python3-sphinx gettext
$ yum -y install glib2-devel libblkid-devel elfutils-libelf-devel

• ArchLinux:

3

rmlint documentation, Release

$ pacman -S git scons python-sphinx
$ pacman -S glib2 libutil-linux elfutils

• Ubuntu:

$ apt-get install git scons python3-sphinx python3-nose gettext
$ apt-get install libelf-dev libglib2.0-dev libblkid-dev

Send us a note if you want to see your distribution here.

1.2 Compilation

Compilation consists of getting the source and translating it into a usable binary:

$ git clone -b develop https://github.com/sahib/rmlint.git
$ cd rmlint/
$ scons config # Look what features scons would compile
$ scons DEBUG=1 -j4 # For releases you can omit DEBUG=1
$ sudo scons DEBUG=1 --prefix=/usr install

Done!

You should be now able to see the manpage with rmlint -h or man 1 rmlint.

4 Chapter 1. Installation

CHAPTER 2

Tutorial

Welcome to the Tutorial of rmlint.

We use a few terms that might not be obvious to you at first, so we gonna explain them to you here.

Duplicate A file that has the same hash as another file.

Original In a group of duplicates, one file is said to be the original file, from which the copies where
created. This might or might not be true, but is an helpful assumption when deleting files.

2.1 Beginner Examples

Let’s just dive in into some examples:

$ rmlint

This simply scans your current working directory for lint and reports them in your terminal. Note that nothing will be
removed (even if it prints rm).

Despite it’s name, rmlint just finds suspicious files, but never modifies the filesystem itself*0. Instead it gives
you detailed reports in different formats to get rid of them yourself. These reports are called outputs. By default a
shellscript will be written to rmlint.sh that contains readily prepared shell commands to remove duplicates and
other finds,

So for the above example, the full process would be:

`-FF`` together with this option. rmlint
(wait for rmlint to finish running)
$ gedit rmlint.sh
(or any editor you prefer... review the content of rmlint.sh to
check what it plans to delete; make any edits as necessary)
$./rmlint.sh
(the rmlint.sh script will ask for confirmation, then delete the
appropriate lint, then delete itself)

0 You could say it should be named findlint.

5

rmlint documentation, Release

2.2 Filtering

What if we do not want to check all files as dupes? rmlint has a good reportoire of options to select only certain
files. We won’t cover all options, but the useful ones. If those options do not suffice, you can always use external tools
to feed rmlint's stdin:

$ find pics/ -iname '*.png' | rmlint -

2.2.1 Limit files by size using --size

only check files between 20 MB and 1 Gigabyte:
$ rmlint --size 20M-1G
short form (-s) works just as well:
$ rmlint -s 20M-1G
only check files bigger than 4 kB:
$ rmlint -s 4K
only check files smaller than 1234 bytes:
$ rmlint -s 0-1234

Valid units include:

K,M,G,T,P for powers of 1000
KB, MB, GB etc for powers of 1024

If no units are given, rmlint assumes bytes.

2.2.2 Limit files by their basename

By default, rmlint compares file contents, regardless of file name. So if afile.jpg has the same content as bfile.txt
(which is unlikely!), then rmlint will find and report this as a duplicate. You can speed things up a little bit by telling
rmlint not to try to match files unless they have the same or similar file names. The three options here are:

-b (--match-basename)
-e (--match-extension)
-i (--match-without-extension) .

Examples:

Find all duplicate files with the same basename:
$ rmlint -b some_dir/
ls some_dir/one/hello.c
rm some_dir/two/hello.c
Find all duplicate files that have the same extension:
$ rmlint -e some_dir/
ls some_dir/hello.c

6 Chapter 2. Tutorial

rmlint documentation, Release

rm some_dir/hello_copy.c
Find all duplicate files that have the same basename:
minus the extension
$ rmlint -e some_dir/
ls some_dir/hello.c
rm some_dir/hello.bak

2.2.3 Limit files by their modification time

This is an useful feature if you want to investigate only files newer than a certain date or if you want to progessively
update the results, i.e. when you run rmlint in a script that watches a directory for duplicates.

The most obvious way is using -N (--newer-than=<timestamp>):

Use a Unix-UTC Timestamp (seconds since epoch)
$ rmlint -N 1414755960%

Find all files newer than file.png
$ rmlint -N $(stat --print %Y file.png)

Alternatively use a ISO8601 formatted Timestamp
$ rmlint -N 2014-09-08T00:12:32+0200

If you are checking a large directory tree for duplicates, you can get a supstantial speedup by creating a times-
tamp file each time you run rmlint. To do this, use command line options: -n (--newer-than-stamp) and
-O stamp:stamp.file (we’ll come to outputs in a minute): Here’s an example for incrementally scanning your
home folder:

First run of rmlint:
$ rmlint /home/foobar -O stamp:/home/foobar/.rmlint.stamp
ls /home/foobar/a.file
rm /home/foobar/b.file

Second run, no changes:
$ rmlint /home/foobar -n /home/foobar/.rmlint.stamp
<nothing>

Second run, new file copied:
$ cp /home/foobar/a.file /home/foobar/c.file
$ rmlint /home/foobar -n /home/foobar/.rmlint.stamp
ls /home/foobar/a.file
rm /home/foobar/b.file
rm /home/foobar/c.file

Note that -n updates the timestamp file each time it is run.

2.3 Outputs

rmlint is capable to create it’s reports in several output-formats. Actually if you run it with the default options you
already see two of those formatters: Namely pretty and summary.

Formatters can be added via the -O (--add-output) switch. The -o (--output) instead clears all defaults first
and does the same as -O afterwards.

Here’s an example:

2.3. Outputs 7

rmlint documentation, Release

$ rmlint -o json:stderr

Here you would get this output printed on stderr:

[{
"description": "rmlint json-dump of lint files",
"cwd": "/home/user/",
"args": "rmlint -o json:stderr"

},
{

"type": "duplicate_file",
"path": "/home/user/test/b/one",
"size": 2,
"inode": 2492950,
"disk_id": 64771,
"is_original": true,
"mtime": 1414587002

},
... snip ...
{

"aborted": false,
"total_files": 145,
"ignored_files": 9,
"ignored_folders": 4,
"duplicates": 11,
"duplicate_sets": 2,
"total_lint_size": 38

}]

You probably noticed the colon in the commandline above. Everything before it is the name of the output-format,
everything behind is the path where the output should land. Instead of an path you can also use stdout and stderr,
as we did above.

Some formatters might be configured to generate subtly different output using the -c (--config) command. Here’s
the list of currently available formatters and their config options:

json Outputs all finds as a json document. The document is a list of dictionaries, where the first and
last element is the header and the footer respectively, everything between are data-dictionaries. This
format was chosen to allow application to parse the output in realtime while rmlint is still running.

The header contains information about the proram invocation, while the footer contains statistics
about the program-run. Every data element has a type which identifies it’s lint type (you can lookup
all types here).

Config values:

• use_header=[true|false]: Print the header with metadata.

• use_footer=[true|false]: Print the footer with statistics.

sh Outputs a shell script that has default commands for all lint types. The script can be executed (it is
already chmod +x‘’d by rmlint). By default it will ask you if you really want to proceed. If you
do not want that you can pass the -d. Addionally it will delete itself after it ran, except you passed
the -x switch.

It is enabled by default and writes to rmlint.sh.

Example output:

8 Chapter 2. Tutorial

https://github.com/sahib/rmlint/blob/develop/src/file.c#L95

rmlint documentation, Release

$ rmlint -o sh:stdout
#!/bin/sh
This file was autowritten by rmlint
rmlint was executed from: /home/user/
You command line was: ./rmlint -o sh:rmlint.sh

... snip ...

echo '/home/user/test/b/one' # original
rm -f '/home/user/test/b/file' # duplicate
rm -f '/home/user/test/a/two' # duplicate
rm -f '/home/user/test/a/file' # duplicate

if [-z $DO_REMOVE]
then
rm -f 'rmlint.sh';

fi

Config values:

• use_ln=[true|false]: Replace duplicate files with symbolic links (if on different device as orig-
inal) or with hardlinks (if on same device as original).

• symlinks_only=[true|false]: Always use symbolic links with use_ln, never hardlinks.

Example:

$ rmlint -o sh:stdout -o sh:rmlint.sh -c sh:use_ln=true -c sh:symlinks_
→˓only=true
...
echo '/home/user/test/b/one' # original
ln -s '/home/user/test/b/file' # duplicate
$./rmlint.sh -d
/home/user/test/b/one

py Outputs a python script and a JSON document, just like the json formatter. The JSON document is
written to .rmlint.json, executing the script will make it read from there. This formatter is
mostly intented for complex usecases where the lint needs special handling. Therefore the python
script can be modified to do things standard rmlint is not able to do easily. You have the full
power of the Python language for your task, use it!

Example:

$ rmlint -o py:remover.py
$./remover.py --dry-run # Needs Python3
Deleting twins of /home/user/sub2/a
Handling (duplicate_file): /home/user/sub1/a
Handling (duplicate_file): /home/user/a

Deleting twins of /home/user/sub2/b
Handling (duplicate_file): /home/user/sub1/b

csv Outputs a csv formatted dump of all lint files. It looks like this:

$ rmlint -o csv -D
type,path,size,checksum
emptydir,"/home/user/tree2/b",0,00000000000000000000000000000000
duplicate_dir,"/home/user/test/b",4,f8772f6fda08bbc826543334663d6f13
duplicate_dir,"/home/user/test/a",4,f8772f6fda08bbc826543334663d6f13

2.3. Outputs 9

rmlint documentation, Release

duplicate_dir,"/home/user/tree/b",8,62202a79add28a72209b41b6c8f43400
duplicate_dir,"/home/user/tree/a",8,62202a79add28a72209b41b6c8f43400
duplicate_dir,"/home/user/tree2/a",4,311095bc5669453990cd205b647a1a00

Config values:

• use_header=[true|false]: Print the column name headers.

stamp Outputs a timestamp of the time rmlint was run.

Config values:

• iso8601=[true|false]: Write an ISO8601 formatted timestamps or seconds since epoch?

pretty Prettyprints the finds in a colorful output supposed to be printed on stdout or stderr. This is what
you see by default.

summary Sums up the run in a few lines with some statistics. This enabled by default too.

progressbar Prints a progressbar during the run of rmlint. This is recommended for large runs where
the pretty formatter would print thousands of lines.

Config values:

• update_interval=number: Number of files to wait between updates. Higher values use less
resources.

2.4 Paranoia

Let’s face it, why should you trust rmlint?

Technically it only computes a hash of your file which might, by it’s nature, collide with the hash of a totally different
file. If we assume a perfect hash function (i.e. one that distributes it’s hash values perfectly even over all possible
values), the probablilty of having a hash-collision is 1

2128 for the default 128-bit hash. Of course hash functions are not
totally random, so the collision probability is slightly higher.

If you’re wary you might want to make a bit more paranoid than it’s default. By default the spooky hash algorithm is
used, which we consider a good tradeoff of speed and accuracy. rmlint’s paranoia level can be easily inc/decreased
using the -p (--paranoid)/ -P (--less-paranoid) option (which might be given up to three times each).

Here’s what they do in detail:

• -p is equivalent to --algorithm=bastard

• -pp is equivalent to --algorithm=sha512

• -ppp is equivalent to --algorithm=paranoid

As you see, it just enables a certain hash algorithm. --algorithm changes the hash algorithm to someting more
secure. bastard is a 256bit hash that consists of two 128bit subhashes (murmur3 and city if you’re curious).
One level up the well-known sha512 (with 512bits obviously) is used. Another level up, no hash function is used.
Instead, files are compared byte-by-byte (which guarantees collision free output).

There is a bunch of other hash functions you can lookup in the manpage. We recommend never to use the -P option.

Note: Even with the default options, the probability of a false positive doesn’t really start to get significant until you
have around 1,000,000,000,000,000,000 files all of the same file size. Bugs in rmlint are sadly (or happily?) more
likely than hash collisions.

10 Chapter 2. Tutorial

rmlint documentation, Release

2.5 Original detection

As mentioned before, rmlint divides a group of dupes in one original and clones of that one. While the chosen
original might not be the one that was there first, it is a good thing to keep one file of a group to prevent dataloss.

The way rmlint chooses the original can be driven by the -S (--sortcriteria) option.

Here’s an example:

Normal run:
$ rmlint
ls c
rm a
rm b

Use alphabetically first one as original
$ rmlint -S a
ls a
rm b
rm c

Alphabetically first makes sense in the case of backup files, ie a.txt.bak comes after a.txt.

Here’s a table of letters you can supply to the -S option:

m keep lowest mtime (oldest) M keep highest mtime (newest)
a keep first alphabetically A keep last alphabetically
p keep first named path P keep last named path

The default setting is -S m – which takes the oldest file, determined by it’s modification time. Multiple sort criteria
can be specified, eg -S mpawill sort first by mtime, then (if tied), based on which path you specified first in the rmlint
command, then finally based on alphabetical order of file name. Note that "original directory" criteria (see below) take
precedence over the -S options.

2.5.1 Flagging original directories

But what if you know better than rmlint? What if your originals are in some specific path, while you know that
the files in it are copied over and over? In this case you can flag directories on the commandline to be original, by
using a special separator (//) between the duplicate and original paths. Every path after the // separator is considered
to be "tagged" and will be treated as an original where possible. Tagging always takes precedence over the -S options
above.

$ rmlint a // b
ls b/file
rm a/file

If there are more than one tagged files in a duplicate group then the highest ranked (per -S options) will be kept.
In order to never delete any tagged files, there is the -k (--keep-all-tagged) option. A slightly more esoteric
option is -m (--must-match-tagged), which only looks for duplicates where there is an original in a tagged path.

Here’s a real world example using these features: I have an portable backup drive with some old backups on it. I have
just backed up my home folder to a new backup drive. I want to reformat the old backup drive and use it for something
else. But first I want to check that there are no "originals" on the drive. The drive is mounted at /media/portable.

2.5. Original detection 11

rmlint documentation, Release

Find all files on /media/portable that can be safely deleted:
$ rmlint -km /media/portable // ~
check the shellscript looks ok:
$ less ./rmlint.sh
run the shellscript to delete the redundant backups
$./rmlint.sh
run again (to delete empty dirs)
$ rmlint -km /media/portable // ~
$./rmlint.sh
see what files are left:
$ tree /media/portable
recover any files that you want to save, then you can safely reformat the drive

In the case of nested mountpoints, it may sometimes makes sense to use the opposite variations, -K
(--keep-all-untagged) and -M (--must-match-untagged).

2.6 Finding duplicate directories

Note: --merge-directories is still an experimental option that is non-trivial to implement. Please double
check the output and report any possible bugs.

As far as we know, rmlint is the only duplicate finder that can do this. Basically, all you have to do is to specify
the -D (--merge-directories) option and rmlint will cache all duplicate until everything is found and then
merge them into full duplicate directories (if any). All other files are printed normally.

This may sound simple after all, but there are some caveats you should know of.

Let’s create a tricky folder structure to demonstrate the feature:

$ mkdir -p fake/one/two/ fake/one/two_copy fake/one_copy/two fake/one_copy/two_copy
$ echo xxx > fake/one/two/file
$ echo xxx > fake/one/two_copy/file
$ echo xxx > fake/one_copy/two/file
$ echo xxx > fake/one_copy/two_copy/file
$ echo xxx > fake/file
$ echo xxx > fake/another_file

Now go run rmlint on it like that:

$ rmlint fake -D -S a
Duplicate Directorie(s):

ls -la /home/sahib/rmlint/fake/one
rm -rf /home/sahib/rmlint/fake/one_copy
ls -la /home/sahib/rmlint/fake/one/two
rm -rf /home/sahib/rmlint/fake/one/two_copy

Duplicate(s):
ls /home/sahib/rmlint/fake/another_file
rm /home/sahib/rmlint/fake/one/two/file
rm /home/sahib/rmlint/fake/file

==> In total 6 files, whereof 5 are duplicates in 1 groups.
==> This equals 20 B of duplicates which could be removed.

12 Chapter 2. Tutorial

rmlint documentation, Release

As you can see it correctly recognized the copies as duplicate directories. Also, it did not stop at fake/one but also
looked at what parts of this original directory could be possibly removed too.

Files that could not be merged into directories are printed separately. Note here, that the original is taken from a
directory that was preserved. So exactly one copy of the xxx-content file stays on the filesystem in the end.

rmlint finds duplicate directories by counting all files in the directory tree and looking up if there’s an equal amount
of duplicate and empty files. If so, it tries the same with the parent directory.

Some file like hidden files will not be recognized as duplicates, but still added to the count. This will of course lead
to unmerged directories. That’s why the -D option implies the -r (--hidden) and -l (--hardlinked) option in
order to make this convenient.

A note to symbolic links: The default behaviour is to not follow symbolic links, but to compare the link targets. If the
target is the same, the link will be the same. This is a sane default for duplicate directories, since twin copies often are
created by doing a backup of some files. In this case any symlinks in the backupped data will still point to the same
target. If you have symlinks that reference a file in each respective directory tree, consider using -f.

Warning: Do never ever modify the filesystem (especially deleting files) while running with the -D option. This
can lead to mismatches in the file count of a directory, possibly causing dataloss. You have been warned!

Sometimes it might be nice to only search for duplicate directories, banning all the sole files from littering the screen.
While this will not delete all files, it will give you a nice overview of what you copied where.

Since duplicate directories are just a lint type as every other, you can just pass it to -T: -T "none +dd" (or -T
"none +duplicatedirs"). There’s also a preset of it to save you some typing: -T minimaldirs.

2.7 Misc options

If you read so far, you know rmlint pretty well by now. Here’s just a list of options that are nice to know, but not
essential:

• -r (--hidden): Include hidden files and directories - this is to save you from destroying git repositories (or
similar programs) that save their information in a .git directory where rmlint often finds duplicates.

If you want to be safe you can do something like this:

$ find . | grep -v '\(.git\|.svn\)' | rmlint -

But you would have checked the output anyways?

• If something ever goes wrong, it might help to increase the verbosity with -v (up to -vvv).

• Usually the commandline output is colored, but you can disable it explicitly with -w (--with-color). If
stdout or stderr is not an terminal anyways, rmlint will disable colors itself.

• You can limit the traversal depth with -d (--max-depth):

$ rmlint -d 0
<finds everything in the same working directory>

• If you want to prevent rmlint from crossing mountpoints (e.g. scan a home directory, but no the HD mounted
in there), you can use the -X (--no-crossdev) option.

• It is possible to tell rmlint that it should not scan the whole file. With -q (--clamp-low) / -Q
(--clamp-top) it is possible to limit the range to a starting point (-q) and end point (-Q). The point where
to start might be either given as percent value, factor (percent / 100) or as an absolute offset.

2.7. Misc options 13

rmlint documentation, Release

If the file size is lower than the absolute offset, the file is simply ignored.

This feature might prove useful if you want to examine files with a constant header. The constant header might
be different, i.e. by a different ID, but the content might be still the same. In any case it is advisable to use this
option with care.

Example:

Start hashing at byte 100, but not more than 90% of the filesize.
$ rmlint -q 100 -Q.9

14 Chapter 2. Tutorial

CHAPTER 3

Frequently Asked Questions

3.1 rmlint finds more/less dupes than tool X!

Make sure that none of the following applies to you:

Both tools might investigate a different number of files. rmlint e.g. does not look through hidden files by default,
while other tools might follow symlinks by default. Suspicious options you should look into are:

• --hidden: Disabled by default, since it might screw up .git/ and similar directories.

• --hardlinked: Might find larger amount files, but not more lint itself.

• --followlinks: Might lead rmlint to different places on the filesystem.

• --merge-directories: pulls in both --hidden and --hardlinked.

If there’s still a difference, check with another algorithm. In particular use -ppp to enable paranoid mode. Also make
sure to have -D (--merge-directories) disabled to see the raw number of duplicate files.

Still here? Maybe talk to us on the issue tracker.

3.2 Can you implement feature X?

Depends. Go to to the issue tracker and open a feature request.

Here is a list of features where you probably have no chance:

• Port it to Windows.

• Find similar files like ssdeep does.

• Make a graphical user interface (totally okay as separate project, though).

15

https://github.com/sahib/rmlint/issues
https://github.com/sahib/rmlint/issues

rmlint documentation, Release

16 Chapter 3. Frequently Asked Questions

CHAPTER 4

Informative reference

These chapters are informative and are not essential for the average user. People that want to extend rmlint might
want to read this though:

4.1 Developer’s Guide

This guide is targeted to people that want to write new features or fix bugs in rmlint.

4.1.1 Bugs

Please use the issue tracker to post and discuss bugs and features:

https://github.com/sahib/rmlint/issues

4.1.2 Philosophy

We try to adhere to some principles when adding features:

• Try to stay compatible to standard unix’ tools and ideas.

• Try to stay out of the users way and never be interactive.

• Try to make scripting as easy as possible.

• Never make rmlint modify the filesystem itself, only produce output to let the user easily do it.

Also keep this in mind, if you want to make a feature request.

4.1.3 Making contributions

The code is hosted on GitHub, therefore our preferred way of receiving patches is using GitHub’s pull requests (normal
git pull requests are okay too of course).

17

https://github.com/sahib/rmlint/issues

rmlint documentation, Release

Note: origin/master should always contain working software. Base your patches and pull requests always on
origin/develop.

Here’s a short step-by-step:

1. Fork it.

2. Create a branch from develop. (git checkout develop && git checkout -b my_feature)

3. Commit your changes. (git commit -am "Fixed it all.")

4. Check if your commit message is good. (If not: git commit --amend)

5. Push to the branch (git push origin my_feature)

6. Open a Pull Request.

7. Enjoy a refreshing Tea and wait until we get back to you.

Here are some other things to check before submitting your contribution:

• Does your code look alien to the other code? Is the style the same?

• Do all tests run? (Simply run nosetests to find out) Also after opening the pull request, your code will be
checked via TravisCI.

• Is your commit message descriptive?

• Is rmlint running okay inside of valgrind (i.e. no leaks and no memory violations)?

For language-translations/updates it is also okay to send the .po files via mail at sahib@online.de, since not every
translator is necessarily a software developer.

4.1.4 Buildsystem Helpers

Environement Variables

CFLAGS Extra flags passed to the compiler.

LDFLAGS Extra flags passed to the linker.

CC Which compiler to use?

Use clang and enable profiling, verbose build and enable debugging
CC=clang CFLAGS='-pg' LDFLAGS='-pg' scons VERBOSE=1 DEBUG=1

Variables

DEBUG Enable debugging symbols for rmlint. This should always be enabled during developement.
Backtraces wouldn’t be useful elsewhise.

VERBOSE Print the exact compiler and linker commands. Useful for troubleshooting build errors.

Arguments

–prefix Change the installation prefix. By default this is /usr, but some users might prefer /usr/
local or /opt.

18 Chapter 4. Informative reference

https://github.com/sahib/rmlint
http://github.com/sahib/rmlint/pulls
https://travis-ci.org/sahib/rmlint
mailto:sahib@online.de

rmlint documentation, Release

–actual-prefix This is mainly useful for packagers. The rmlint binary knows where it is installed
(which is needed to set e.g. the path to the gettext files). When installing a package, most of the time
the build is installed to a local test environment first before being packed to /usr. In this case the
--prefix would be set to the path of the temporary build env, while --actual-prefix would
be set to /usr.

Notable targets

install Install all program parts system-wide.

config Print a summary of all features that will be compiled and what the environment looks like.

man Build the manpage.

docs Build the onlice html docs (which you are reading now).

test Build the tests (requires python and nosetest installed). Optionally valgrind can be installed
to run the tests through valgrind:

$ USE_VALGRIND=1 nosetests # or nosetests-3.3, python3 needed.

xgettext Extract a gettext .pot template from the source.

4.1.5 Sourcecode layout

• All C-source lives in src, the file names should be self explanatory.

• All documentation is inside docs.

• All translation stuff should go to po.

• All packaging should be done in pkg/<distribution>.

• Tests are written in Python and live in tests.

4.1.6 Hashfunctions

Here is a short comparasion of the existing hashfunctions in rmlint (linear scale). For reference: Those plots were
rendered with these sources - which are very ugly, sorry.

If you want to add new hashfunctions, you should have some arguments why it is valueable and possiblye even
benchmark it with the above scripts to see if it’s really that much faster.

Also keep in mind that most of the time the hashfunction is not the bottleneck.

4.1.7 Optimizations

For sake of overview, here is a short list of optimizations implemented in rmlint:

Obvious ones

• Do not compare each file with each other by content, use a hashfunction to reduce comparison overhead drasti-
cally (introduces possibility of collisions though).

• Only compare files of same size with each other.

4.1. Developer’s Guide 19

https://raw.githubusercontent.com/sahib/rmlint/gh-pages/plots/hash_comparasion_log.png
https://raw.githubusercontent.com/sahib/rmlint/gh-pages/plots/hash_comparasion_lin.png
https://github.com/sahib/rmlint/tree/gh-pages/plots

rmlint documentation, Release

• Use incremental hashing, i.e. hash block-wise each size group and stop as soon a difference occurs or the file is
read fully.

Subtle ones

• Check only executable files to be non-stripped binaries.

• Use preadv(2) based reading for small speeedups.

• Every thread in rmlint is shared, so only few calls to pthread_create are made.

Insane ones

• Check the device ID of each file to see if it on a rotational (normal hard disks) or on a non-rotational device (like
a SSD). On the latter the file might be processed by several threads.

• Use fiemap ioctl(2) to analyze the harddisk layout of each file, so each block can read it in perfect order
on a rotational device.

• Use a common buffer pool for IO buffers.

• Use only one hashsum per group of same-sized files.

• Implement paranoia check as hash sum, so large chunks of the file are read and compared at one time. The total
memory used for this can be configured by --max-paranoid-ram.

4.2 Translating rmlint

Rudimentary support for internationalization is provided via gettext.

4.2.1 Adding new languages

Fork a new .po file from the po-template (here swedish):
$ msginit -i po/rmlint.pot -o po/se.po --locale se --no-translator

Edit the po/se.po file, the format is self describing
$ vim po/se.po

.po files need to be compiled, but that's handled by scons already.
$ scons
$ scons install

You should see your changes now:
$ LANG=se ./rmlint

If you’d like to contribute your new translation you want to do a pull request (if you really dislike that, you may also
send the translation to us via mail). Here is a small introduction on Pull Requests.

4.2.2 Updating existing languages

20 Chapter 4. Informative reference

http://rmlint.readthedocs.org/en/latest/developers.html

rmlint documentation, Release

Edit the file to your needs:
$ vim po/xy.po

Install:
$ scons install

Done
$ LANG=xy ./rmlint

4.2.3 Marking new strings for translations

If you want to mark strings in the C-code to be translated, you gonna need to mark them so the xgettext can find
it. The latter tool goes through the source and creates a template file with all translations left out.

/* Mark the string with the _() macro */
fprintf(out, _("Stuff is alright: %s\n"), (alright) ? "yes" : "no");

It gets a little harder when static strings need to be marked, since they cannot be translated during compile time. You
have to mark them first and translate them at a later point:

static const char * stuff = _N("Hello World");

void print_world(void) {
printf("World is %s\n", _(stuff));

}

After you’re done with marking the new strings, you have to update the template:

scons can do this for you already:
$ scons xgettext

You need to add the new strings to the existing translations now:

$ msgmerge po/de.po po/rmlint.pot > po/de_new.po
$ EDITOR po/de_new.po # check if everything was merged alright.
$ mv po/de_new.po po/de.po

After that you can translate the new strings and proceed like in the upper steps.

4.3 rmlint

4.3.1 find duplicate files and other space waste efficiently

SYNOPSIS

rmlint [TARGET_DIR_OR_FILES ...] [//] [TARGET_DIR_OR_FILES ...] [-] [OPTIONS]

DESCRIPTION

rmlint finds space waste and other broken things on your filesystem and offers to remove it. Types of waste include:

• Duplicate files.

4.3. rmlint 21

rmlint documentation, Release

• Nonstripped Binaries (Binaries with debug symbols).

• Broken links.

• Empty files and directories.

• Files with broken user or group id.

In order to find the lint, rmlint is given one or more directories to traverse. If no directories or files were given,
the current working directory is assumed. rmlint will take care of things like filesystem loops and symlinks during
traversing.

Found duplicates are divided into the original and duplicates. Original are what rmlint thinks to be the file that was
first there. You can drive the original detection with the -S option. If you know which path contains the originals you
can prefix the path with //,

Note: rmlint will not delete any files. It only produces executable output for you to remove it.

OPTIONS

General Options

-T --types="description" (default: defaults) Configure the types of lint rmlint is supposed to
find. The description string enumerates the types that shall be investigated, separated by a space,
comma or semicolon (actually more separators work). At the beginning of the string certain groups
may be specified.

• all: Enables all lint types.

• defaults: Enables all lint types, but nonstripped.

• minimal: defaults minus emptyfiles and emptydirs.

• minimaldirs: defaults minus emptyfiles, emptydirs and duplicates, but
with duplicatedirs.

• none: Disable all lint types.

All following lint types must be one of the following, optionally prefixed with a + or - to select or
deselect it:

• badids, bi: Find bad UID, GID or files with both.

• badlinks, bl: Find bad symlinks pointing nowhere.

• emptydirs, ed: Find empty directories.

• emptyfiles, ef: Find empty files.

• nonstripped, ns: Find nonstripped binaries. (Warning: slow)

• duplicates, df: Find duplicate files.

• duplicatedirs, dd: Find duplicate directories.

Warning: It is good practice to enclose the description in quotes. In obscure cases argument parsing
might fail in weird ways:

-ed is recognized as -e and -d here, -d takes "-s 10M" as parameter.
This will fail to do the supposed, finding also files smaller than 10M.
$ rmlint -T all -ef -ed -s10M /media/music/

22 Chapter 4. Informative reference

rmlint documentation, Release

-o --output=spec / -O --add-output=spec (default: -o sh:rmlint.sh -o pretty:stdout -o summary:stdout)
Configure the way rmlint outputs it’s results. You link a formatter to a file through spec. A file
might either be an arbitrary path or stdout or stderr. If file is omitted, stdout is assumed.

If this options is specified, rmlint’s defaults are overwritten. The option can be specified several
times and formatters can be specified more than once for different files.

–add-output works the same way, but does not overwrite the defaults. Both -o and -O may not be
specified at the same time.

For a list of formatters and their options, look at the Formatters section below.

-c --config=spec[=value] (default: none) Configure a formatter. This option can be used to
fine-tune the behaviour of the existing formatters. See the Formatters section for details on the
available keys.

If the value is omitted it is set to a truthy value.

:-a --algorithm=name (default: spooky) :

Choose the hash algorithm to use for finding duplicate files. The following well-known algorithms are
available:

spooky, city, murmur, md5. sha1, sha256, sha512.

If not explicitly stated in the name the hashfunctions use 128 bit. There are variations of the above
functions:

• bastard: 256bit, half seeded city, half murmur.

• city256, city512, murmur256, murmur512: Slower variations with more bits.

• spooky32, spooky64: Faster version of spooky with less bits.

• paranoid: No hash function, compares files byte-by-byte.

-v --loud / -V --quiet Increase or decrease the verbosity. You can pass these options several
times. This only affects rmlint’s logging on stderr, but not the outputs defined with -o.

-p --paranoid / -P --less-paranoid (default) Increase the paranoia of rmlints internals.
Both options can be specified up to three times. They do not do any work themselves, but set
some other options implicitly as a shortcut.

• -p is equivalent to –algorithm=bastard

• -pp is equivalent to –algorithm=sha512

• -ppp is equivalent to –algorithm=paranoid

The last one is not a hash function in the traditional meaning, but performs a byte-by-byte compari-
son of each file. See also –max-paranoid-ram.

For the adventurous, it is also possible to decrease the default paranoia:

• -P is equivalent to –algorithm spooky64

• -PP is equivalent to –algorithm spooky32

• -PPP is equivalent to –algorithm debian_random

This is really not recommended though.

-D --merge-directories ([experimental] default: disabled) Makes rmlint use a special mode
where all found duplicates are collected and checked if whole directory trees are duplicates. This is
an HIGHLY EXPERIMENTAL FEATURE and was/is tricky to implement right. Use with caution.

4.3. rmlint 23

rmlint documentation, Release

You always should make sure that the investigated directory is not modified during rmlint or it’s
removal scripts run.

Output is deferred until all duplicates were found. Sole duplicate groups are printed after the direc-
tories.

–sortcriteria applies for directories too, but ’p’ or ’P’ (path index) has no defined (useful) meaning.
Sorting takes only place when the number of preferred files in the directory differs.

Notes:

• This option pulls in -r (--hidden) and -l (--hardlinked) for convenience.

• This feature might not deliver perfect result in corner cases.

• This feature might add some runtime.

• Consider using -FF together with this option (this is the default).

-q --clamp-low=[fac.tor|percent%|offset] (default: 0) / -Q --clamp-top=[fac.tor|percent%|offset] (default: 1.0)
The argument can be either passed as factor (a number with a . in it), a percent value (suffixed by
%) or as absolute number or size spec, like in --size.

Only look at the content of files in the range of from low to (including) high. This means, if the
range is less than -q0% to -Q100%, than only partial duplicates are searched. If the actual file size
would be 0, the file is ignored during traversing. Be careful when using this function, you can easily
get dangerous results for small files.

This is useful in a few cases where a file consists of a constant sized header or footer. With this option
you can just compare the data in between. Also it might be useful for approximate comparison where
it suffices when the file is the same in the middle part.

-u --max-paranoid-ram=size Apply a maximum number of bytes to use for –paranoid. The
size-description has the same format as for –size.

-w --with-color (default) / -W --no-with-color Use color escapes for pretty output or dis-
able them. If you pipe rmlints output to a file -W is assumed automatically.

-h --help / -H --version Show this manual or print the version string.

Traversal Options

-t --threads=N** (default: 16) The number of threads to use during file tree traversal and hashing.
rmlint probably knows better than you how to set the value.

-s --size=range (default: all) Only consider files in a certain size range. The format of range is
min-max, where both ends can be specified as a number with an optional multiplier. The available
multipliers are:

• C (1^1), W (2^1), B (512^1), K (1000^1), KB (1024^1), M (1000^2), MB (1024^2), G
(1000^3), GB (1024^3),

• T (1000^4), TB (1024^4), P (1000^5), PB (1024^5), E (1000^6), EB (1024^6)

The size format is about the same as dd(1) uses. Example: "100KB-2M".

It’s also possible to specify only one size. In this case the size is interpreted as "up to this size".

-d --max-depth=depth (default: INF) Only recurse up to this depth. A depth of 1 would disable
recursion and is equivalent to a directory listing.

24 Chapter 4. Informative reference

rmlint documentation, Release

-l --hardlinked / -L --no-hardlinked (default) By default rmlint will not allow several
files with the same inode and therefore keep only one of them in it’s internal list. If -l is specified
the whole group is reported instead.

-f --followlinks / -F --no-followlinks / -FF --see-symlinks (**default**)
Follow symbolic links? If file system loops occur rmlint will detect this. If -F is specified,
symbolic links will be ignored completely, if the -F is specified once more rmlint will see
symlinks an treats them like small files with the path to their target in them. The latter is the default
behaviour, since it is a sensible default for --merge-directories.

Note: Hardlinks are always followed, but it depends on -L how those are handled.

-x --crossdev (default) / -X --no-crossdev Do cross over mount points (-x)? Or stay always
on the same device (-X)?

-r --hidden / -R --no-hidden (default) Also traverse hidden directories? This is often not a
good idea, since directories like .git/ would be investigated.

-b --match-basename / -B --no-match-basename (default) Only consider those files as
dupes that have the same basename. See also man 1 basename.

-e --match-with-extension / -E --no-match-with-extension (default) Only con-
sider those files as dupes that have the same file extension. For example two photos would only
match if they are a .png.

-i --match-without-extension / -I --no-match-without-extension (default)
Only consider those files as dupes that have the same basename minus the file extension. For
example: banana.png and banana.jpeg would be considered, while apple.png and
peach.png won’t.

-n --newer-than-stamp=<timestamp_filename> / -N --newer-than=<iso8601_timestamp_or_unix_timestamp>
Only consider files (and their size siblings for duplicates) newer than a certain modification time
(mtime). The age barrier may be given as seconds since the epoch or as ISO8601-Timestamp like
2014-09-08T00:12:32+0200.

-n expects a file from where it can read the timestamp from. After rmlint run, the file will be updated
with the current timestamp. If the file does not initially exist, no filtering is done but the stampfile is
still written.

-N in contrast takes the timestamp directly and will not write anything.

If you want to take only the files (and not their size siblings) you can use find(1):

• find -mtime -1 | rmlint - # find all files younger than a day

Note: you can make rmlint write out a compatible timestamp with:

• -O stamp:stdout # Write a seconds-since-epoch timestamp to
stdout on finish.

• -O stamp:stdout -c stamp:iso8601 # Same, but write as ISO8601.

Original Detection Options

-k --keep-all-tagged / -K --keep-all-untagged (default) Don’t delete any duplicates
that are in original paths. (Paths that were named after //).

Note: for lint types other than duplicates, --keep-all-tagged option is ignored.

-m --must-match-tagged / -M --must-match-untagged (default) Only look for dupli-
cates of which one is in original paths. (Paths that were named after //).

4.3. rmlint 25

rmlint documentation, Release

-S --sortcriteria=criteria (default: m)

• m: keep lowest mtime (oldest) M: keep highest mtime (newest)

• a: keep first alphabetically A: keep last alphabetically

• p: keep first named path P: keep last named path

One can have multiple criteria, e.g.: -S am will choose first alphabetically; if tied then by mtime.
Note: original path criteria (specified using //) will always take first priority over -S options.

FORMATTERS

• csv: Format all found lint as comma-separated-value list.

Available options:

– no_header: Do not write a first line describing the column headers.

• sh: Format all found lint as shellscript. Sane defaults for most lint-types are set. This formatter is activated as
default.

Available options:

– use_ln: Instead of just deleting duplicates remove them and replace them with hardlinks (if they are on the
same partition) or with symlinks if they’re on different devices.

– symlinks_only: Only relevant with use_ln, always use symbolic links, never use hardlinks.

• json: Print a JSON-formatted dump of all found reports. Outputs all finds as a json document. The document
is a list of dictionaries, where the first and last element is the header and the footer respectively, everything
between are data-dictionaries.

Available options:

– use_header=[true|false]: Print the header with metadata.

– use_footer=[true|false]: Print the footer with statistics.

• py: Outputs a python script and a JSON document, just like the json formatter. The JSON document is written
to .rmlint.json, executing the script will make it read from there. This formatter is mostly intented for
complex usecases where the lint needs special handling. Therefore the python script can be modified to do
things standard rmlint is not able to do easily.

• stamp:

Outputs a timestamp of the time rmlint was run.

Available options:

– iso8601=[true|false]: Write an ISO8601 formatted timestamps or seconds since epoch?

• progressbar: Shows a progressbar. This is meant for use with stdout or stderr.

Available options:

– update_interval=number: Number of files to wait between updates. Higher values use less resources.

• pretty: Shows all found items in realtimes nicely colored. This formatter is activated as default.

• summary: Shows counts of files and their respective size after the run. Also list all written files.

26 Chapter 4. Informative reference

rmlint documentation, Release

EXAMPLES

• rmlint

Check the current working directory for duplicates.

• find ~/pics -iname '*.png' | ./rmlint -

Read paths from stdin and check all png files for duplicates.

• rmlint files_backup // files --keep-all-tagged --must-match-tagged

Check for duplicate files between the current files and the backup of it. Only files in files_backup would be
reported as duplicate. Additionally, all reported duplicates must occur in both paths.

PROBLEMS

1. False Positives: Depending on the options you use, there is a very slight risk of false positives (files that are
erroneously detected as duplicate). Internally a hashfunctions is used to compute a fingerprint of a file. These
hashfunctions may, in theory, map two different files to the same fingerprint. This happens about once in 2 ** 64
files. Since rmlint computes at least 3 hashes per file and requires them to be the same size, it’s very unlikely
to happen. If you’re really wary, try the –paranoid option.

2. File modification during or after rmlint run: It is possible that a file that rmlint recognized as dupli-
cate is modified afterwards, resulting in a different file. This is a general problem and cannot be solved from
rmlint's side alone. You should never modify the data until ‘‘rmlint‘‘ and the shellscript has been run
through. Careful persons might even consider to mount the filesystem you are scanning read-only.

SEE ALSO

• find(1)

• rm(1)

Extended documentation and an in-depth tutorial can be found at:

• http://rmlint.rtfd.org

BUGS

If you found a bug, have a feature requests or want to say something nice, please visit https://github.com/sahib/rmlint/
issues.

Please make sure to describe your problem in detail. Always include the version of rmlint (--version). If you
experienced a crash, please include at least one of the following information with a debug build of rmlint:

• gdb --ex run -ex bt --args rmlint -vvv [your_options]

• valgrind --leak-check=no rmlint -vvv [your_options]

You can build a debug build of rmlint like this:

• git clone git@github.com:sahib/rmlint.git

• cd rmlint

• scons DEBUG=1

• sudo scons install # Optional

4.3. rmlint 27

http://rmlint.rtfd.org
https://github.com/sahib/rmlint/issues
https://github.com/sahib/rmlint/issues

rmlint documentation, Release

LICENSE

rmlint is licensed under the terms of the GPLv3.

See the COPYRIGHT file that came with the source for more information.

PROGRAM AUTHORS

rmlint was written by:

• Christopher <sahib> Pahl 2010-2014 (https://github.com/sahib)

• Daniel <SeeSpotRun> T. 2014-2014 (https://github.com/SeeSpotRun)

Also see the THANKS file for other people that helped us.

If you consider a donation you can use Flattr or buy us a beer if we meet:

https://flattr.com/thing/302682/libglyr

28 Chapter 4. Informative reference

https://github.com/sahib
https://github.com/SeeSpotRun
https://flattr.com/thing/302682/libglyr

CHAPTER 5

Authors

rmlint was and is written by:

Christopher Pahl https://github.com/sahib 2010-2014
Daniel Thomas https://github.com/SeeSpotRun 2014-2014

Additional thanks to:

• qitta (Ideas & Testing)
• dieterbe (Bugs & -D was his idea)
• My cats.
• Attila Toth
• All sane bugreporters (there are not many)
• All packagers, porters and patchers.

29

https://github.com/sahib
https://github.com/SeeSpotRun
https://github.com/qitta
https://github.com/Dieterbe
http://imgur.com/gallery/rims0yl

rmlint documentation, Release

30 Chapter 5. Authors

CHAPTER 6

License

rmlint is licensed under the terms of GPLv3.

31

http://www.gnu.org/copyleft/gpl.htm

rmlint documentation, Release

32 Chapter 6. License

CHAPTER 7

Donations

If you think rmlint saved*0 you some serious time and/or space, you might consider a donation. You can donate either

via Flattr or via PayPal:

Or just buy us a beer if we ever meet. Nice emails are okay too.

0 If it freed you from your beloved data: Sorry.†0

33

http://flattr.com/thing/302682/libglyr

	Installation
	Dependencies
	Compilation

	Tutorial
	Beginner Examples
	Filtering
	Outputs
	Paranoia
	Original detection
	Finding duplicate directories
	Misc options

	Frequently Asked Questions
	rmlint finds more/less dupes than tool X!
	Can you implement feature X?

	Informative reference
	Developer's Guide
	Translating rmlint
	rmlint

	Authors
	License
	Donations

